skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kinnibrugh, Tiffany L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 18, 2025
  2. Abstract

    Nanoscale morphology has a direct impact on the performance of materials for electrochemical energy storage. Despite this importance, little is known about the evolution of primary particle morphology nor its effect on chemical pathways during synthesis. In this study, operando characterization is combined with atomic‐scale and continuum simulations to clarify the relationship between morphology of cathode primary particles and their lithiation during calcination of LiNi0.8Mn0.1Co0.1O2(NMC‐811). This combined approach reveals a key role for surface oxygen adsorption in facilitating the lithiation reaction by promoting metal diffusion and oxidation, and simultaneously providing surface sites for lithium insertion. Furthermore, oxygen surface termination is shown to increase the activation energy for sintering, leading to smaller primary particle sizes at intermediate temperatures. Smaller particles provide both shorter diffusion lengths for lithium incorporation and increased surface site density for lithium insertion. These insights provide a foundation for more tailored syntheses of cathode materials with optimized performance characteristics.

     
    more » « less