skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kipper, Matt J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drug-induced liver injury (DILI) remains a leading cause of drug attrition and acute liver failures, partly due to the inadequacy of animal models to accurately predict human clinical outcomes, which necessitates the utilization of in vitro models of the human liver. However, primary human hepatocytes (PHHs) are in short supply for routine drug screening. In contrast, induced pluripotent stem cells (iPSCs)-derived hepatocyte-like cells (HLCs) are a nearly unlimited cell source but display a fetal-like (versus adult-like) phenotype when differentiated using conventional protocols on tissue culture plastic or glass adsorbed with 2D extracellular matrix (ECM) proteins. Electrospinning can produce porous nanoscale 3D fibers that have a large surface area and present a high density of receptor ligands to modulate cell phenotype. However, the application of electrospinning to generate 3D liver-derived ECM substrates for HLC differentiation remains unexplored. Therefore, here we developed methods to a) electrospin nanofibers of different porosities and diameters using porcine liver ECM (PLECM) with or without type I collagen and b) use these fibers to determine functional modulation in iPSC-derived HLCs while using PHHs as a control cell type relative to conventional adsorbed ECM substrates. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Crosslinked porous protein crystals are a new biomaterial that can be engineered to encapsulate, stabilize, and organize guest molecules, nanoparticles, and biological moieties. In this study, for the first time, the combined interactions of DNA strands with porous protein crystals are quantitatively measured by high-resolution atomic force microscopy (AFM) and chemical force microscopy. The surface structure of protein crystals with unusually large pores was observed in liquid via high-resolution AFM. Force–distance ( F – D ) curves were also obtained using AFM tips modified to present or capture DNA. The modification of AFM tips allowed the tips to covalently bind DNA that was pre-loaded in the protein crystal nanopores. The modified tips enabled the interactions of DNA molecules with protein crystals to be quantitatively studied while revealing the morphology of the buffer-immersed protein crystal surface in detail, thereby preserving the structure and properties of protein crystals that could be disrupted or destroyed by drying. The hexagonal space group was manifest at the crystal surface, as were the strong interactions between DNA and the porous protein crystals in question. In sum, this study furthered our understanding of how a new protein-based biomaterial can be used to bind guest DNA assemblies. 
    more » « less
  4. Abstract Owing to significant differences across species in liver functions, in vitro human liver models are used for screening the metabolism and toxicity of compounds, modeling diseases, and cell‐based therapies. However, the extracellular matrix (ECM) scaffold used for such models often does not mimic either the complex composition or the nanofibrous topography of native liver ECM. Thus, here novel methods are developed to electrospin decellularized porcine liver ECM (PLECM) and collagen I into nano‐ and microfibers (≈200–1000 nm) without synthetic polymer blends. Primary human hepatocytes (PHHs) on nanofibers in monoculture or in coculture with nonparenchymal cells (3T3‐J2 embryonic fibroblasts or primary human liver endothelial cells) display higher albumin secretion, urea synthesis, and cytochrome‐P450 1A2, 2A6, 2C9, and 3A4 enzyme activities than on conventionally adsorbed ECM controls. PHH functions are highest on the collagen/PLECM blended nanofibers (up to 34‐fold higher CYP3A4 activity relative to adsorbed ECM) for nearly 7 weeks in the presence of the fibroblasts. In conclusion, it is shown for the first time that ECM composition and topography synergize to enhance and stabilize PHH functions for several weeks in vitro. The nanofiber platform can prove useful for the above applications and to elucidate cell‐ECM interactions in the human liver. 
    more » « less
  5. Abstract Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer‐based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well‐established ones) to enhance or achieve new properties for electrospun fiber materials. 
    more » « less