skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kirabo, Annet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Junior faculty mentoring committees have important roles in ensuring that faculty thrive and adjust to their new positions and institutions. Here, we describe the purpose, structure, and benefits of junior faculty mentoring committees, which can be a powerful tool for early‐career academic investigators in science, technology, engineering, mathematics, and medical (STEMM) fields. There is a paucity of information about what mentoring committees are, how to use them effectively, what areas they should evaluate, and how they can most successfully help junior faculty progress in their careers. This work offers guidance for both junior faculty mentees and mentoring committee members on how to best structure and utilize mentoring committees to promote junior faculty success. A better understanding of the intricacies of the mentoring committee will allow junior faculty members to self‐advocate and will equip committee mentors with tools to ensure that junior faculty are successful in thriving in academia. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Abstract Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected. 
    more » « less
  3. Abstract A first‐generation college student is typically defined as a student whose biological parent(s) or guardian(s) never attended college or who started but did not finish college. However, “first‐generation” can represent diverse family education situations. The first‐generation student community is a multifaceted, and intersectional group of individuals who frequently lack educational/financial resources to succeed and, consequently, require supportive environments with rigorous mentorship. However, first‐generation students often do not make their identity as first‐generation students known to others due to several psychosocial and academic factors. Therefore, they are often “invisible minorities” in higher education. In this paper, we describe the diverse family situations of first‐generation students, further define “first‐generation,” and suggest five actions that first‐generation trainees at the undergraduate/graduate stages can engage in to succeed in an academic climate. We also provide suggestions for mentors to accommodate first‐generation students' unique experiences and equip them with tools to deliver intentional mentoring practices. We hope that this paper will help promote first‐generation student success throughout the academic pipeline. 
    more » « less
  4. This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure. 
    more » « less
  5. Abstract During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block‐face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase‐quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes,Chchd3,Chchd6, andMitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age‐related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age‐related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue‐dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms betweenDrosophilaand mammals. 
    more » « less