skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kirby, Brian J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The magnetic properties of permalloy-based trilayers of the form Py 0.8 Cu 0.2 /Py 0.4 Cu 0.6 /Py/IrMn were studied as the spacer layer undergoes a paramagnetic to ferromagnetic phase transition. We find the coupling between the free Py 0.8 Cu 0.2 layer and the exchange bias pinned Py to be strongly temperature-dependent: there is negligible coupling above the Curie temperature of the Py 0.4 Cu 0.6 spacer layer, strong ferromagnetic coupling below that temperature, and a tunable coupling between these extremes. Polarized neutron reflectometry was used to measure the depth profile of the magnetic order in the system, allowing us to correlate the order parameter with the coupling strength. The thickness dependence shows that these are interface effects with an inverse relationship to thickness, and that there is a magnetic proximity effect that enhances the Curie temperature of the spacer layer with characteristic length scale of about 7 nm. As a demonstration of potential functionality of such a system, the structure is shown to spontaneously flip from the antiparallel to parallel magnetic configuration once the spacer layer has developed long-range magnetic order. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point.

     
    more » « less
  4. null (Ed.)
  5. Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO 3 monolayers by inducing a spin reorientation in (SrRuO 3 ) 1 /(SrTiO 3 ) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction ( N < 3) to eightfold 〈111〉 directions ( N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO 3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO 3 . First-principle calculations reveal that increasing the SrTiO 3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO 3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications. 
    more » « less