The cause, or causes, of the Pleistocene megafaunal extinctions have been difficult to establish, in part because poor spatiotemporal resolution in the fossil record hinders alignment of species disappearances with archeological and environmental data. We obtained 172 new radiocarbon dates on megafauna from Rancho La Brea in California spanning 15.6 to 10.0 thousand calendar years before present (ka). Seven species of extinct megafauna disappeared by 12.9 ka, before the onset of the Younger Dryas. Comparison with high-resolution regional datasets revealed that these disappearances coincided with an ecological state shift that followed aridification and vegetation changes during the Bølling-Allerød (14.69 to 12.89 ka). Time-series modeling implicates large-scale fires as the primary cause of the extirpations, and the catalyst of this state shift may have been mounting human impacts in a drying, warming, and increasingly fire-prone ecosystem.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
null (Ed.)Abstract. Holocene climate reconstructions are useful for understanding the diversefeatures and spatial heterogeneity of past and future climate change. Herewe present a database of western North American Holocene paleoclimaterecords. The database gathers paleoclimate time series from 184 terrestrialand marine sites, including 381 individual proxy records. The records spanat least 4000 of the last 12 000 years (median duration of 10 725 years)and have been screened for resolution, chronologic control, and climatesensitivity. Records were included that reflect temperature, hydroclimate,or circulation features. The database is shared in the machine readableLinked Paleo Data (LiPD) format and includes geochronologic data forgenerating site-level time-uncertain ensembles. This publicly accessible andcurated collection of proxy paleoclimate records will have wide researchapplications, including, for example, investigations of the primary featuresof ocean–atmospheric circulation along the eastern margin of the NorthPacific and the latitudinal response of climate to orbital changes. Thedatabase is available for download at https://doi.org/10.6084/m9.figshare.12863843.v1 (Routson and McKay, 2020).more » « less
-
High resolution pollen analyses of sediment core LEDC10-1 from Lake Elsinore yield the first well-dated, terrestrial record of sub-centennial-scale ecologic change in coastal southern California between ~32 and 9 ka. In the Lake Elsinore watershed, the initial, mesic montane conifer forests dominated by Pinus, and Cupressaceae with trace amounts of Abies and Picea were replaced by a sequence of multiple, extended severe mega-droughts between ~27.5 and ~25.5 ka, in which halophytic and xerophytic herbs and shrubs occupied an ephemeral lake. This prolonged and extended dry interval, which corresponds with warm waters offshore, imply strengthening of the North Pacific High and persistent below-average winter precipitation. The subsequent, contrasting monotonic occurrence of montane conifers reflects little variation in cold, mesic climate until ~15 ka. Postglacial development of Quercus woodland and chaparral mark the return to more xeric, warmer conditions at this time. A brief reversal at ~13.1e~12.1 ka, as reflected by an expansion of Pinus, is correlative with the Younger Dryas and interrupts development of warm, postglacial climate. Subsequent gradual expansion of xeric vegetation post e Younger Dryas denotes the establishment of a winter hydroclimate regime in coastal southern California that is more similar to modern conditions. Pollen-based reconstructions of temperature and precipitation at Lake Elsinore are generally correlative with pollen-based paleoclimatic reconstructions and foraminifera based sea surface temperatures from Santa Barbara Basin in marine core ODP 893. The conspicuous absence of the ~27.5e~25.5 ka glacial “mega-drought” in the Santa Barbara Basin pollen record highlights the sensitivity of Lake Elsinore to hydroclimate change, and thus, the importance of this new record that indicates that mega-drought can occur during the full glacial when climatic boundary conditions and forcings differed substantially from the present.more » « less
-
The hydroclimate of the southwestern United States (US) region changed abruptly during the latest Pleistocene as the continental ice sheets over North America retreated from their most southerly extent. To investigate the nature of this change, we present a new record from Lake Elsinore, located 36 km inland from the Pacific Ocean in Southern California and evaluate it in the context of records across the coastal and interior southwest United States, including northwest Mexico. The sediment core recovered from Lake Elsinore provides a continuous sequence with multi-decadal resolution spanning 19e9 ka BP. Sedimentological and geochemical analyses reveal hydrologic variability. In particular, sand and carbonate components indicate abrupt changes at the Oldest Dryas (OD), BøllingeAllerød (BA), and Younger Dryas (YD) transitions, consistent with the timing in Greenland. Hydrogen isotope analyses of the C28 nalkanoic acids from plant leaf waxes (dDwax) reveal a long term trend toward less negative values across 19 9 ka BP. dDwax values during the OD suggest a North Pacific moisture source for precipitation, consistent with the dipping westerlies hypothesis. We find no isotopic evidence for the North American Monsoon reaching as far west as Lake Elsinore; therefore, we infer that wet/dry changes in the coastal southwest were expressed through winter-season precipitation, consistent with modern climatology. Comparing Lake Elsinore to other southwest records (notably Cave of Bells and Fort Stanton) we find coincident timing of the major transitions (OD to BA, BA to YD) and hydrologic responses during the OD and BA. The hydrologic response, however, varied during the YD consistent with a dipole between the coastal and interior southwest. The coherent pattern of hydrologic responses across the interior southwest US and northwest Mexico during the OD (wet), the BA (drier), and YD (wet) follows changes in the Atlantic Meridional Overturning Circulation, presumably via its combined influence on North Pacific winter storm tracks and the extent/magnitude of the North American Monsoon. In contrast, Lake Elsinore and the coastal southwest experiences a deglacial drying trend punctuated by abrupt change at the OD to BA and BA to YD transitions. This trend tracks rising greenhouse gases through the deglacial, with an apparent southward shift in westerly moisture sources adjusting to the retreating ice sheet.more » « less
-
Klong Thap Lamu, a large mangrove-fringed tidal channel along the northern Andaman Coast of Thailand, provides an ideal location to test the hypothesis that a paleotsunami record can be preserved in the sediments of a mangrove forest. The 2004 Indian Ocean tsunami destroyed local swaths of mangrove forest with highly variable widths — up to 300 m. Left in the wake of the tsunami is a thin mantling of laterally discontinuous sand, macerated shells, and localized coral rubble that is being mixed rapidly into the underlying mangrove peat. Transects across the channel's tsunami-modified shore show that the sand layer thins abruptly at the border of the undisturbed mangroves, suggesting that the energy of the wave dissipated quickly as it entered the forest. The distribution and sedimentology of the 2004 tsunami deposit (Unit tI) suggest that any paleotsunami deposit within this mangrove environment should be spatially restricted and thoroughly bioturbated. Sediment cores collected from within the 2004 tsunami zone penetrate a buried coral-shell peat unit (Unit tIII) that tapers inland. Unit tIII is strikingly similar to Unit tI, except for Unit tIII's diffuse sedimentology, which we attribute to extensive bioturbation. Unit tIII also cross-cuts an identified facies boundary that is traceable across the width of the 2004 tsunami zone. Rather than a facies boundary associated with the regional early-to-late Holocene sea level regression, stratigraphic correlations suggest that Unit tIII represents an event horizon (i.e. tsunami). AMS 14C dates on material from within Unit tIII combined with an upper bracketing age suggest that the tsunami event occurred sometime between 2720 and 4290 cy BP. If correct, this tsunami predates the 3–4 tsunami events recognized to the north at Koh Phra Thong. Unit tIII is, however, a potential far-field equivalent of a recently recognized paleotsunami deposit on the southwestern Indian coast ca. 3,710 years before present (Nair et al., 2010).more » « less