skip to main content

Search for: All records

Creators/Authors contains: "Kirk, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license . 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  3. Flux analysis indicates that camelina pod photosynthesis contributes to seed yield. 
    more » « less
  4. Abstract Different intensities of high temperatures affect the growth of photosynthetic cells in nature. To elucidate the underlying mechanisms, we cultivated the unicellular green alga Chlamydomonas reinhardtii under highly controlled photobioreactor conditions and revealed systems-wide shared and unique responses to 24-hour moderate (35°C) and acute (40°C) high temperatures and subsequent recovery at 25°C. We identified previously overlooked unique elements in response to moderate high temperature. Heat at 35°C transiently arrested the cell cycle followed by partial synchronization, up-regulated transcripts/proteins involved in gluconeogenesis/glyoxylate-cycle for carbon uptake and promoted growth. But 40°C disrupted cell division and growth. Both high temperatures induced photoprotection, while 40°C distorted thylakoid/pyrenoid ultrastructure, affected the carbon concentrating mechanism, and decreased photosynthetic efficiency. We demonstrated increased transcript/protein correlation during both heat treatments and hypothesize reduced post-transcriptional regulation during heat may help efficiently coordinate thermotolerance mechanisms. During recovery after both heat treatments, especially 40°C, transcripts/proteins related to DNA synthesis increased while those involved in photosynthetic light reactions decreased. We propose down-regulating photosynthetic light reactions during DNA replication benefits cell cycle resumption by reducing ROS production. Our results provide potential targets to increase thermotolerance in algae and crops. 
    more » « less
  5. Abstract Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping. 
    more » « less
  6. Jez, Joseph M. ; Topp, Christopher N. (Ed.)
    Single-cell RNA-seq is a tool that generates a high resolution of transcriptional data that can be used to understand regulatory networks in biological systems. In plants, several methods have been established for transcriptional analysis in tissue sections, cell types, and/or single cells. These methods typically require cell sorting, transgenic plants, protoplasting, or other damaging or laborious processes. Additionally, the majority of these technologies lose most or all spatial resolution during implementation. Those that offer a high spatial resolution for RNA lack breadth in the number of transcripts characterized. Here, we briefly review the evolution of spatial transcriptomics methods and we highlight recent advances and current challenges in sequencing, imaging, and computational aspects toward achieving 3D spatial transcriptomics of plant tissues with a resolution approaching single cells. We also provide a perspective on the potential opportunities to advance this novel methodology in plants. 
    more » « less
  7. Abstract

    Duckweeds are the smallest angiosperms, possessing a simple body architecture and highest rates of biomass accumulation. They can grow near‐exponentially via clonal propagation. Understanding their reproductive biology, growth, and development is essential to unlock their potential for phytoremediation, carbon capture, and nutrition. However, there is a lack of non‐laborious and convenient methods for spatially and temporally imaging an array of duckweed plants and growth conditions in the same experiment. We developed an automated microscopy approach to record time‐lapse images of duckweed plants growing in 12‐well cell culture plates. As a proof‐of‐concept experiment, we grew duckweed on semi‐solid media with and without sucrose and monitored its effect on their growth over 3 days. Using the PlantCV toolkit, we quantified the thallus area of individual plantlets over time, and showed thatL. minorgrown on sucrose had an average growth rate four times higher than without sucrose. This method will serve as a blueprint to perform automated high‐throughput growth assays for studying the development patterns of duckweeds from different species, genotypes, and conditions.

    more » « less