skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kirkpatrick, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 20, 2026
  2. The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Drilling Program (IODP) Expedition 405 aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026 ~8 km seaward of the Japan Trench to characterize the input sediments to the subduction zone and Site C0019 ~6 km landward of the trench where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), so revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~960 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to measure temperature over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with diverse domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials. 
    more » « less
    Free, publicly-accessible full text available December 20, 2026
  3. A new component to the drilling operations has been added to the International Ocean Discovery Program (IODP) Expedition 405 schedule following approval of an Ancillary Project Letter (1013-APL). The new operations involve deploying a borehole observatory into Hole C0019D with a temperature sensor string. This hole and observatory infrastructure (i.e., casing) was previously drilled as part of Integrated Ocean Drilling Program Expedition 343/343T in 2012 (Expedition 343/343T Scientists, 2013). Site C0019 is the same site as Site JTCT-01A, described as part of Expedition 405 in Kodaira et al. (2023). Installation of a new instrument string in Hole C0019D at the beginning of Expedition 405 operations will allow the passive observation of anticipated subsurface hydrologic effects caused by nearby drilling (e.g., Kinoshita and Saffer, 2018). Together, the new drilling around Site C0019/JTCT-01A and the resulting observatory temperature observations in Hole C0019D will constitute a series of cross-borehole experiments that enable the determination of large-scale hydrogeologic properties around the plate boundary fault and overlying damage zone. The site priorities and drilling and coring strategy at the primary sites for Expedition 405 (Sites JTCT-01A and JTCT-02A) remain unchanged from the original Expedition 405 Scientific Prospectus (Kodaira et al., 2023). 
    more » « less
  4. Abstract We conducted a search for new ultracool companions to nearby white dwarfs using multiple methods, including the analysis of colors and examination of images in both the optical and the infrared. Through this process, we identified 51 previously unrecognized systems with candidate ultracool companions. 31 of these systems are resolved in at least one catalog, and all but six are confirmed as comoving companions via common proper motion and consistent parallax measurements (when available). We have followed up four comoving companions with near-infrared spectroscopy and confirm their ultracool nature. The remaining twenty candidates are unresolved, but show clear signs of infrared excess which is most likely due to the presence of a cold, low-mass companion or a dusty circumstellar disk. Three of these unresolved systems have existing optical spectra that clearly show the presence of a cool stellar companion to the white dwarf primary via spectral decomposition. These new discoveries, along with our age estimates for the primary white dwarfs, will serve as valuable benchmark systems for future characterization of ultracool dwarfs. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  5. Abstract After decades of brown dwarf discovery and follow-up, we can now infer the functional form of the mass distribution within 20 pc, which serves as a constraint on star formation theory at the lowest masses. Unlike objects on the main sequence that have a clear luminosity-to-mass correlation, brown dwarfs lack a correlation between an observable parameter (luminosity, spectral type, or color) and mass. A measurement of the brown dwarf mass function must therefore be procured through proxy measurements and theoretical models. We utilize various assumed forms of the mass function, together with a variety of birthrate functions, low-mass cutoffs, and theoretical evolutionary models, to build predicted forms of the effective temperature distribution. We then determine the best fit of the observed effective temperature distribution to these predictions, which in turn reveals the most likely mass function. We find that a simple power law ( dN / dM M α ) withα≈ 0.5 is optimal. Additionally, we conclude that the low-mass cutoff for star formation is ≲0.005M. We corroborate the findings of Burgasser, which state that the birthrate has a far lesser impact than the mass function on the form of the temperature distribution, but we note that our alternate birthrates tend to favor slightly smaller values ofαthan the constant birthrate. Our code for simulating these distributions is publicly available. As another use case for this code, we present findings on the width and location of the subdwarf temperature gap by simulating distributions of very old (8–10 Gyr) brown dwarfs. 
    more » « less
  6. Abstract We present the discovery of VHS J183135.58−551355.9 (hereafter VHS J1831−5513), an L/T transition dwarf identified as a result of its unusually red near-infrared colors (J−KS= 3.633 ± 0.277 mag;J−W2 = 6.249 ± 0.245 mag) from the VISTA Hemisphere Survey and CatWISE2020 surveys. We obtain low-resolution near-infrared spectroscopy of VHS J1831−5513 using the Magellan Folded port InfraRed Echellette spectrograph to confirm its extremely red nature and assess features sensitive to surface gravity (i.e., youth). Its near-infrared spectrum shows multiple CH4absorption features, indicating an exceptionally low effective temperature for its spectral type. Based on proper-motion measurements from CatWISE2020 and a photometric distance derived from itsKs-band magnitude, we find that VHS J1831−5513 is a likely (∼85% probability) kinematic member of theβPictoris moving group. Future radial velocity and trigonometric parallax measurements will clarify such membership. Follow-up mid-infrared or higher-resolution near-infrared spectroscopy of this object will allow for further investigation as to the cause(s) of its redness, such as youth, clouds, and viewing geometry. 
    more » « less
  7. Free, publicly-accessible full text available December 20, 2026
  8. Free, publicly-accessible full text available December 20, 2026
  9. Free, publicly-accessible full text available December 20, 2026
  10. The extremely large slip that occurred on the shallow portion of the Japan Trench subduction zone during the 2011 Mw 9.1 Tohoku-oki earthquake directly contributed to the devastating tsunami that inundated the Pacific coast of Japan. International Ocean Discovery Program (IODP) Expedition 405 (Tracking Tsunamigenic Slip Across the Japan Trench) aimed to investigate the conditions and processes that facilitated the extremely shallow slip on the subduction interface during the 2011 Tohoku-oki earthquake to improve understanding of the factors that allow slip to the trench on subduction zones. Expedition 405 implemented a combined logging, coring, and observatory operational plan at two sites: Site C0026, ~8 km seaward of the Japan Trench, to characterize the input sediments to the subduction zone and Site C0019, ~6 km landward of the trench, where the plate boundary fault zone is present at ~825 meters below seafloor (mbsf). At Site C0026, the input section was logged to ~430 mbsf with a logging-while-drilling (LWD) assembly that characterized the succession of sediments and rocks from the seafloor to the basaltic rocks of the oceanic crust. Cores recovered from four holes as deep as 290 mbsf contain a sequence of hemipelagic and pelagic sediments that will be input into the shallow subduction system and therefore control both the localization of the plate boundary fault zone and the slip behavior of the plate boundary. Site C0019 was previously drilled in 2012 during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project [JFAST]), and revisiting this site allowed temporal variations in the frontal prism and plate boundary fault zone to be evaluated. The LWD data to ~980 mbsf characterized the frontal prism, plate boundary fault zone, and lower plate to the basaltic volcanic rocks. Cores were recovered from multiple holes that contain a variety of muds from the frontal prism and the plate boundary fault zone, as well as lower plate materials. Comparison with the sediments from Site C0026 provides a basis to interpret the tectonic and sedimentological processes operating in the dynamic environment of the frontal prism. Cores from the plate boundary fault zone provide a unique window into the structural complexity of an active plate boundary fault that is known to host large seismic slip. Two borehole observatories were installed at Site C0019 that contain temperature sensors deployed to take measurements over a period of years and reveal the hydrogeologic structure of the shallow subduction system. These hugely successful drilling operations, combined with postexpedition work to measure the mechanical, frictional, paleomagnetic, and hydrogeologic properties of the core samples and to constrain the history of past seismic slip at Site C0019, will provide an unprecedented opportunity to advance our understanding of shallow subduction systems. Outreach during the expedition leveraged and elevated the success of the operations by sharing the outcomes with a variety of domestic and international audiences, including scientists, students, educators, stakeholders, and the general public. Thanks to the efforts of a large group of onboard outreach officers and their onshore support, activities included ship-to-shore broadcast events; interviews with science party members and crew; the publication of videos, blogs, magazine articles, and social media posts; and development of formalized classroom lesson plans and materials. 
    more » « less
    Free, publicly-accessible full text available December 20, 2026