- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kirkpatrick, James D (1)
-
Kirkpatrick, James D. (1)
-
Plank, Terry (1)
-
Polissar, Pratigya J (1)
-
Rabinowitz, Hannah S (1)
-
Rowe, Christie D (1)
-
Savage, Heather M (1)
-
Williams, Randolph T. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The seismic moments observed for low‐frequency earthquakes (LFEs) vary over multiple orders of magnitude, even where the LFEs occur within families of similar events. Although this variability is typically interpreted to record a scale‐limited process at the LFE source, neither the slip per LFE nor the rupture area can be determined from seismological constraints. Here, we examine incrementally developed slickenfibers that have been proposed to record LFEs in exhumed subduction zones. These structures form through repeated, micron‐scale slip events across dilational irregularities in the fault plane, which are punctuated by cementation and sealing in the interstitial space. By statistically analyzing the geometry of inclusion trails delineating slip‐parallel mineral‐growth increments, we constrain the variability in slip per inferred LFE and test end‐member hypotheses regarding the controls on LFE moments. We find that that the slickenfibers exhibit characteristic slip increments, favoring a “slip‐limited” model that requires large variability in LFE rupture areas.more » « less
-
Rabinowitz, Hannah S; Savage, Heather M; Plank, Terry; Polissar, Pratigya J; Kirkpatrick, James D; Rowe, Christie D (, Earth and Planetary Science Letters)We determine the trace element stratigraphy of Site C0019, drilled during the Japan Fast Trench Drilling Project (JFAST) International Ocean Discovery Program (IODP) Expedition 343, to illuminate the structure of the plate boundary following the Tohoku-Oki earthquake of 2011. The stratigraphic units at the JFAST site are compared to undeformed Western Pacific sediments from two reference sites (Ocean Drilling Program (ODP) Site 1149 and Deep Sea Drilling Project (DSDP) Site 436). The trace element fingerprints in these reference sedimentary units can be correlated to individual JFAST samples. At the JFAST site, we find that the accretionary wedge and downgoing plate sediments in the core are composed primarily of Holocene to Eocene sediments. There are several age reversals and gaps within the sequence, consistent with multiple faults in the bottom 15 m of the JFAST core. Our results point to several candidate faults that could have slipped during the 2011 Tohoku-Oki earthquake, in addition to the pelagic clay layer that has been proposed as the main décollement fault.more » « less
An official website of the United States government
