Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A pilot inventory to develop measures of bias and discrimination experienced by engineering doctoral students asked if they have been treated unfairly by their primary advisor, secondary advisor, and other faculty. Analyses of pilot data (n = 250) revealed Women, Students of Color, and sexual minorities perceived experiences of unfair treatment in intricate patterns. Post hoc analyses show that Women experience more incidences of unfair treatment than men. Race/ethnicity identity groups report a different number of unfair treatment incidences, with Students of Color generally reporting more experiences than white students. Being a sexual minority contributed to reporting more incidences of unfair treatment. Unfair treatment from faculty significantly predicted students changing and considering changing research labs when controlling for gender, race/ethnicity, and sexuality. Unfair treatment from faculty significantly impacted engineering identity when controlling for gender, race/ethnicity, sexuality, lab changers, and change considerers. Analyses of pilot data demonstrated the negative impact of unfair treatment on students and their development as engineers.
-
A persistent problem in engineering is an insufficient number of students interested in pursuing engineering as a college major and career. Middle school is a critical time where student interest, identity, and career choices begin to solidify. Student interest in engineering at the K-12 level has been shown to predict whether they pursue engineering as a college major and career. Therefore, research is needed to determine if engineering summer camp activities affect engineering interest and identity in middle school students and in this paper, we present a research study approach to achieve the stated objective. To develop engineering-specific theories of how engineers are formed, this paper explores interest and identity development of three middle-school populations participating in engineering summer camps offered by the College of Engineering at a Western land-grant institution: (1) Young women in engineering camp (2) First generation camp and, (3) Introduction to engineering camp. The camps are identical in content and designed with the goal of increasing understanding of different engineering fields and careers. The only difference between the three camps is that the women-focused and first generation camps involve participation of guest speakers and role-model mentors appropriate for the camp populations. The main objective of designingmore »
-
https://peer.asee.org/28140
-
https://peer.asee.org/28248 The research draws from a larger study conducted at four large public universities examining the non-normative attitudes of first-year engineering students and how these attitudes might affect their collegiate experience and the development of their engineering identity. Within the survey demographics section, students were asked to report their gender with as many options as they felt appropriate to describe themselves. Students were given the option to respond “male,” “female,” “cisgender,” “transgender,” “agender,” “genderqueer,” and/or “a gender not listed.” Of the students surveyed, 2,697 identified themselves as male or female. Of this population, 55 students additionally identified themselves as cisgender. A Welch’s t-test revealed that factors relating to engineering identity were significantly different between cisgender students who self-identified and those who did not. Self-identified cisgender students possessed higher scores on factors measuring components of engineering identity, such as Physics Performance/Competence beliefs (p = 0.001, Cohen’s d = 0.412). These students were also rated as higher on Openness from the “Big 5” personality measures (p = 0.006, Cohen’s d = 0.403), and scored significantly lower on Conscientiousness from the “Big 5” personality measures (p = 0.028, Cohen’s d = 0.343). These data highlight the differences between cisgender identified and non-identified students.more »
-
https://peer.asee.org/28669 This research paper investigates the use of interpretative phenomenological analysis (IPA) in two studies that contribute to engineering education research (EER). We critically examine adaptations made to IPA to address cultural considerations and research focuses of EER. The authors provide varying perspectives in relation to their experiences using IPA. In this paper, we capture an open dialogue that describes adaptations made to IPA and critically question these adaptations.
-
https://peer.asee.org/28378 This research paper examines how four first-year engineering students interact with one another in teams to answer two research questions: 1) How do students experience working in diverse teams? and 2) Do their perceptions of diversity, affect, and engineering practice change as a result of working in diverse teams? Despite engineering's emphasis on developing students’ teaming skills, little research has been conducted on how students develop sensitivity to students from different cultures and backgrounds within diverse teams. We interviewed four students in a first-semester, first-year engineering team twice for a total of eight interviews to understand their experiences working in diverse teams. Each interview was analyzed using a modified form of Interpretative Phenomenological Analysis (IPA) to understand the lived experience of each participant. In this paper, we present the results from the qualitative analysis of one team’s complete interviews as a first step in the larger research project.
-
https://peer.asee.org/27918 Engineering has become a globally focused career with the need to work with people from diverse backgrounds. Researchers seeking to improve students’ teaming skills have found ways to assess team member effectiveness and development of teaming skills. Despite the emphasis on the importance of developing engineering students’ teaming skills, little research has been conducted on how students develop sensitivity for students from different cultures and backgrounds within teams in first-year engineering programs. Here we define diversity sensitivity as students’ multicultural openness and actions taken to incorporate diverse students. To address the lack of literature on diversity and teaming this work examines the following research questions: What changes occur in students’ diversity sensitivity, multicultural effectiveness, and engineering practices as a result of working in diverse teams? How do students’ perceptions of diversity, affect, and engineering practices change as a result of working on diverse teams? The focus of this paper is on the first phase of this three phase project, in which students’ multicultural openness, diversity sensitivity, and teaming effectiveness were measured quantitatively. Additionally, results from qualitative in-depth interviews further develop emerging trends in the quantitative portions of the work. Survey data were collected from participants enrolled in first semestermore »
-
https://peer.asee.org/27950 This paper presents results of work completed on our project, Intersectionality of Non-normative Identities in the Cultures of Engineering (InIce). The overarching focus of this project is on how students who hold non-normative identities position themselves, grow through their education, and navigate the cultures of engineering they experience in college. Our goal is to investigate ways to engage students who hold non-normative identities to become more active and lifelong participants in engineering disciplines. Our work is proceeding in three phases: 1) Identify, through a quantitative instrument, the attitudinal profiles of normative and non-normative students in engineering; 2) Characterize students’ normative and non-normative identities through in-depth interviews and analysis of differences between students with normative and non-normative identities in engineering; and 3) Drawing from our findings, develop a workshop and set of courses to incorporate diversity topics into engineering programs to enhance the culture of engineering to be more responsive towards, and inclusive of, a diverse range of student identities. We have completed the first phase of the project in which we quantitatively measured and characterized student groups with normative and non-normative identities in engineering. Our definitions of normative and non-normative for this project are developed through Topological Data Analysismore »