skip to main content

Search for: All records

Creators/Authors contains: "Kiss, ��."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microscopic algae are tougher than you might think. Some can even survive the extreme cold. In this article, we describe one of the coolest algae of all, the Antarctic green alga called Chlamydomonas sp. UWO241. This one-celled super-organism lives deep in the frigid waters of a remote and permanently ice-covered lake in Antarctica. How does this little alga thrive in such a barren and unwelcoming place? Well, dive into this article to learn how studying the genome of UWO241 is helping scientists better understand this amazingly hardy alga.
    Free, publicly-accessible full text available May 23, 2023
  2. Free, publicly-accessible full text available April 16, 2023
  3. Free, publicly-accessible full text available March 1, 2023
  4. Free, publicly-accessible full text available January 1, 2023
  5. A widely held assumption on network dynamics is that similar components are more likely to exhibit similar behavior than dissimilar ones and that generic differences among them are necessarily detrimental to synchronization. Here, we show that this assumption does not generally hold in oscillator networks when communication delays are present. We demonstrate, in particular, that random parameter heterogeneity among oscillators can consistently rescue the system from losing synchrony. This finding is supported by electrochemical-oscillator experiments performed on a multielectrode array network. Remarkably, at intermediate levels of heterogeneity, random mismatches are more effective in promoting synchronization than parameter assignments specifically designed to facilitate identical synchronization. Our results suggest that, rather than being eliminated or ignored, intrinsic disorder in technological and biological systems can be harnessed to help maintain coherence required for function.

  6. Antarctica is home to an assortment of psychrophilic algae, which have evolved various survival strategies for coping with their frigid environments. Here, we explore Antarctic psychrophily by examining the ∼212 Mb draft nuclear genome of the green alga Chlamydomonas sp. UWO241, which resides within the water column of a perennially ice-covered, hypersaline lake. Like certain other Antarctic algae, UWO241 encodes a large number (≥37) of ice-binding proteins, putatively originating from horizontal gene transfer. Even more striking, UWO241 harbors hundreds of highly similar duplicated genes involved in diverse cellular processes, some of which we argue are aiding its survival in the Antarctic via gene dosage. Gene and partial gene duplication appear to be an ongoing phenomenon within UWO241, one which might be mediated by retrotransposons. Ultimately, we consider how such a process could be associated with adaptation to extreme environments but explore potential non-adaptive hypotheses as well.