skip to main content

Search for: All records

Creators/Authors contains: "Kitamura, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Factors related to two sources of energy input to the ionosphere, the Poynting flux associated with both quasistatic fields (Sdc) and Alfvénic fluctuations (Sac), and the soft electron precipitation, are investigated to evaluate their correlations with the O+and the H+outflows in the dayside cusp region by using recalibrated FAST/Time‐of‐Flight Energy, Angle, and Mass Spectrograph (TEAMS) data during the 24–25 September 1998 geomagnetic storm studied by Strangeway et al. (2005, The Poynting flux and the soft electron precipitation are well correlated with ion outflow flux in the dayside cusp region.Sdcshows the highest correlation with the O+outflows, while it is the electron number flux that correlates best with the H+outflows. The Alfvénic waves play an essential role in accelerating outflows. The averaged O+/H+flux ratio is 3.0 and is positively correlated to the Poynting flux, suggesting that the O+flux increases more strongly with the energy input.

    more » « less