Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 8, 2025
-
Abstract Salt water is ubiquitous, playing crucial roles in geological and physiological processes. Despite centuries of investigations, whether or not water’s structure is drastically changed by dissolved ions is still debated. Based on density functional theory, we employ machine learning based molecular dynamics to model sodium chloride, potassium chloride, and sodium bromide solutions at different concentrations. The resulting reciprocal-space structure factors agree quantitatively with neutron diffraction data. Here we provide clear evidence that the ions in salt water do not distort the structure of water in the same way as neat water responds to elevated pressure. Rather, the computed structural changes are restricted to the ionic first solvation shells intruding into the hydrogen bond network, beyond which the oxygen radial-distribution function does not undergo major change relative to neat water. Our findings suggest that the widely cited pressure-like effect on the solvent in Hofmeister series ionic solutions should be carefully revisited.
-
null (Ed.)The role of geometric frustration of water molecules in the rate of water oxidation in the nanoconfined interlayer of manganese-oxide layered materials (birnessite, buserite) is examined in a well-controlled experiment. Calcium buserite is prepared, and used in a split-batch synthetic protocol to prepare calcium birnessite, sodium buserite, and sodium birnessite, and partially dehydrated sodium birnessite. Thus, four samples are prepared in which features effecting catalytic efficiency (defect density, average manganese oxidation state) are controlled, and the main difference is the degree of hydration of the interlayer (two layers of water in buserites vs. one layer of water in birnessite). Molecular dynamics simulations predict birnessite samples to exhibit geometric water frustration, which facilitates redox catalysis by lowering the Marcus reorganization energy of electron transfer, while buserite samples exhibit traditional intermolecular hydrogen bonding among the two-layer aqeuous region, leading to slower catalytic behavior akin to redox reactions in bulk water. Water oxdiation activity is investigated using chemical and electrochemical techniques, demonstrating and quantifying the role of water frustration in enhancing catalysis. Calculation and experiment demonstrate dehydrated sodium birnessite to be most effective, and calcium buserite the least effective, with a difference in electrocatlytic overpotential of ∼750 mV and a ∼20-fold difference in turnover number.more » « less
-
null (Ed.)The vital functions of cell membranes require their ability to quickly change shape to perform complex tasks such as motion, division, endocytosis, and apoptosis. Membrane curvature in cells is modulated by very complex processes such as changes in lipid composition, the oligomerization of curvature-scaffolding proteins, and the reversible insertion of protein regions that act like wedges in the membrane. But, could much simpler mechanisms support membrane shape transformation? In this work, we demonstrate how the change of amphiphile topology in the bilayer can drive shape transformations of cell membrane models. To tackle this, we have designed and synthesized new types of amphiphiles—Janus dendrimers—that self-assemble into uni-, multilamellar, or smectic-ordered vesicles, named dendrimersomes. We synthesized Janus dendrimers containing a photo-labile bond that upon UV-Vis irradiation cleavage lose a part of the hydrophilic dendron. This leads to a change from a cylindrically to a wedge-shaped amphiphile. The high mobility of these dendrimers allows for the concentration of the wedge-shaped amphiphiles and the generation of transmembrane asymmetries. The concentration of the wedges and their rate of segregation allowed control of the budding and generation of structures such as tubules and high genus vesicles.more » « less