skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klemba, Neal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Material extrusion (MEX) of soft, multifunctional composites consisting of liquid metal (LM) droplets can enable highly tailored properties for a range of applications from soft robotics to stretchable electronics. However, an understanding of how LM ink rheology and print process parameters can reconfigure LM droplet shape during MEX processing for in-situ control of properties and function is currently limited. Herein, the material (ink viscosity, and LM droplet size) and process (nozzle velocity, height from print bed, and extrusion rate) parameters are determined which control LM microstructure during MEX of these composites. The interplay and interdependence of these parameters is evaluated and nearly spherical LM droplets are transformed into highly elongated ellipsoidal shapes with an average aspect ratio of 12.4 by systematically tuning each individual parameter. Material and process relationships are established for the LM ink which show that an ink viscosity threshold should be fulfilled to program the LM microstructure from spherical to an ellipsoidal shape during MEX. Additionally, the thin oxide layer on the LM droplets is found to play a unique and critical role in the reconfiguration and retention of droplet shape. Finally, two quantitative design maps based on material and process parameters are presented to guide MEX additive manufacturing strategies for tuning liquid droplet architecture in LM-polymer inks. The insights gained from this study enable informed design of materials and manufacturing to control microstructure of emerging multifunctional soft composites. 
    more » « less