skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kleykamp, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at different L / E values. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer, E avail , and transverse momentum transfer, p T , or three momentum transfer, q 3 are presented. Published by the American Physical Society2024 
    more » « less
  2. Neutron production in antineutrino interactions can lead to bias in energy reconstruction in neutrino oscillation experiments, but these interactions have rarely been studied. MINERvA previously studied neutron production at an average antineutrino energy of ∼3 GeV in 2016 and found deficiencies in leading models. In this paper, the MINERvA 6 GeV average antineutrino energy dataset is shown to have similar disagreements. A measurement of the cross section for an antineutrino to produce two or more neutrons and have low visible energy is presented as an experiment-independent way to explore neutron production modeling. This cross section disagrees with several leading models’ predictions. Neutron modeling techniques from nuclear physics are used to quantify neutron detection uncertainties on this result. 
    more » « less
  3. Double- and single-differential cross sections for inclusive charged-current ν μ -nucleus scattering are reported for the kinematic domain 0 to 2 GeV / c in three-momentum transfer and 0 to 2 GeV in available energy, at a mean ν μ energy of 1.86 GeV. The measurements are based on an estimated 995,760 ν μ charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for ν μ -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by χ 2 comparisons of the predicted-versus-measured ν μ CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos ( 3 + 1 model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, 13.6 × 10 20 protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use ν μ charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a Δ m 41 2 range extending 2 (3) orders of magnitude above (below) 1 eV 2 . NOvA finds no evidence for active-to-sterile neutrino oscillations under the 3 + 1 model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous ν τ appearance for Δ m 41 2 3 eV 2 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  5. Abstract Measuring observables to constrain models using maximum-likelihood estimation is fundamental to many physics experiments. Wilks' theorem provides a simple way to construct confidence intervals on model parameters, but it only applies under certain conditions. These conditions, such as nested hypotheses and unbounded parameters, are often violated in neutrino oscillation measurements and other experimental scenarios. Monte Carlo methods can address these issues, albeit at increased computational cost. In the presence of nuisance parameters, however, the best way to implement a Monte Carlo method is ambiguous. This paper documents the method selected by the NOvA experiment, the profile construction. It presents the toy studies that informed the choice of method, details of its implementation, and tests performed to validate it. It also includes some practical considerations which may be of use to others choosing to use the profile construction. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  6. We present measurements of the cross section for antineutrino charged-current quasielasticlike scattering on hydrocarbon using the medium energy NuMI wide-band neutrino beam peaking at antineutrino energy hE¯νi ∼ 6 GeV. The measurements are presented as a function of the longitudinal momentum (pjj) and transverse momentum (pT) of the final state muon. This work complements our previously reported high statistics measurement in the neutrino channel and extends the previous antineutrino measurement made in a low energy beam at hE¯νi ∼ 3.5 GeV out to pT of 2.5 GeV=c. Current theoretical models do not completely describe the data in this previously unexplored high pT region. The single differential cross section as a function of four-momentum transfer (Q2 QE) now extends to 4 GeV2 with high statistics. The cross section as a function of Q2 QE shows that the tuned simulations developed by the MINERvA Collaboration that agreed well with the low energy beam measurements do not agree as well with the medium energy beam measurements. Newer neutrino interaction models such as the GENIE v3 tunes are better able to simulate the high Q2 QE region. 
    more » « less
  7. Abstract We compare different neural network architectures for machine learning algorithms designed to identify the neutrino interaction vertex position in the MINERvA detector. The architectures developed and optimized by hand are compared with the architectures developed in an automated way using the package “Multi-node Evolutionary Neural Networks for Deep Learning” (MENNDL), developed at Oak Ridge National Laboratory. While the domain-expert hand-tuned network was the best performer, the differences were negligible and the auto-generated networks performed as well. There is always a trade-off between human, and computer resources for network optimization and this work suggests that automated optimization, assuming resources are available, provides a compelling way to save significant expert time. 
    more » « less