skip to main content


Search for: All records

Creators/Authors contains: "Kliewer, Jorg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our extensive real measurements over Amazon EC2 show that the virtual instances often have different computing speeds even if they share the same configurations. This motivates us to study heterogeneous Coded Storage Elastic Computing (CSEC) systems where machines, with different computing speeds, join and leave the network arbitrarily over different computing steps. In CSEC systems, a Maximum Distance Separable (MDS) code is used for coded storage such that the file placement does not have to be re-defined with each elastic event. Computation assignment algorithms are used to minimize the computation time given computation speeds of different machines. While previous studies of heterogeneous CSEC do not include stragglers - the slow machines during the computation, we develop a new framework in heterogeneous CSEC that introduces straggler tolerance. Based on this framework, we design a novel algorithm using our previously proposed approach for heterogeneous CSEC such that the system can handle any subset of stragglers of a specified size while minimizing the computation time. Furthermore, we establish a trade-off in computation time and straggler tolerance. Another major limitation of existing CSEC designs is the lack of practical evaluations using real applications. In this paper, we evaluate the performance of our designs on Amazon EC2 for applications of the power iteration and linear regression. Evaluation results show that the proposed heterogeneous CSEC algorithms outperform the state-of-the-art designs by more than 30%. 
    more » « less
  2. null (Ed.)
    Linear nested codes, where two or more sub-codes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled low-density parity-check (SC-LDPC) codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. Since the parity-check matrices of different nested sub-codes partially overlap, the optimization of one nested sub-code imposes constraints on the optimization of the other sub-codes. To tackle these constraints, a multi-step optimization process is applied first to one of the nested codes, then sequential optimization of the remaining nested codes is carried out based on the constraints imposed by the previously optimized sub-codes. Results show that the order of optimization has a significant impact on the number of dominant absorbing sets in the Tanner graph of the code, resulting in a trade-off between the performance of a nested code structure and its optimization sequence: the code which is optimized without constraints has fewer harmful structures than the code which is optimized with constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes are completely removed using our proposed optimization strategy. 
    more » « less
  3. Linear nested codes, where two or more subcodes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled LDPC codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. The presented multi-step optimization process is applied first to one of the nested codes, then an optimization of the remaining nested codes is carried out based on these code constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes can be completely removed using our proposed optimization strategy. 
    more » « less