skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klisura, Dorde"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Text-to-SQL systems empower users to interact with databases using natural language, automatically translating queries into executable SQL code. However, their reliance on database schema information for SQL generation exposes them to significant security vulnerabilities, particularly schema inference attacks that can lead to unauthorized data access or manipulation. In this paper, we introduce a novel zero-knowledge framework for reconstructing the underlying database schema of text-to-SQL models without any prior knowledge of the database. Our approach systematically probes text-to-SQL models with specially crafted questions and leverages a surrogate GPT-4 model to interpret the outputs, effectively uncovering hidden schema elements—including tables, columns, and data types. We demonstrate that our method achieves high accuracy in reconstructing table names, with F1 scores of up to .99 for generative models and .78 for fine-tuned models, underscoring the severity of schema leakage risks. We also show that our attack can steal prompt information in non-text-to-SQL models. Furthermore, we propose a simple protection mechanism for generative models and empirically show its limitations in mitigating these attacks. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026