skip to main content

Search for: All records

Creators/Authors contains: "Knapp, Alan K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Plant populations are limited by resource availability and exhibit physiological trade‐offs in resource acquisition strategies. These trade‐offs may constrain the ability of populations to exhibit fast growth rates under water limitation and high cover of neighbours. However, traits that confer drought tolerance may also confer resistance to competition. It remains unclear how fitness responses to these abiotic conditions and biotic interactions combine to structure grassland communities and how this relationship may change along a gradient of water availability.

    To address these knowledge gaps, we estimated the low‐density growth rates of populations in drought conditions with low neighbour cover and in ambient conditions with average neighbour cover for 82 species in six grassland communities across the Central Plains and Southwestern United States. We assessed the relationship between population tolerance to drought and resistance to competition and determined if this relationship was consistent across a precipitation gradient. We also tested whether population growth rates could be predicted using plant functional traits.

    Across six sites, we observed a positive correlation between low‐density population growth rates in drought and in the presence of interspecific neighbours. This positive relationship was particularly strong in the grasslands of the northern Great Plains but weak in the most xeric grasslands. High leaf dry matter content and a low (more negative) leaf turgor loss point were associated with high population growth rates in drought and with neighbours in most grassland communities.

    Synthesis: A better understanding of how both biotic and abiotic factors impact population fitness provides valuable insights into how grasslands will respond to extreme drought. Our results advance plant strategy theory by suggesting that drought tolerance increases population resistance to interspecific competition in grassland communities. However, this relationship is not evident in the driest grasslands, where above‐ground competition is likely less important. Leaf dry matter content and turgor loss point may help predict which populations will establish and persist based on local water availability and neighbour cover, and these predictions can be used to guide the conservation and restoration of biodiversity in grasslands.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  3. Abstract

    Plant traits can be helpful for understanding grassland ecosystem responses to climate extremes, such as severe drought. However, intercontinental comparisons of how drought affects plant functional traits and ecosystem functioning are rare. The Extreme Drought in Grasslands experiment (EDGE) was established across the major grassland types in East Asia and North America (six sites on each continent) to measure variability in grassland ecosystem sensitivity to extreme, prolonged drought. At all sites, we quantified community‐weighted mean functional composition and functional diversity of two leaf economic traits, specific leaf area and leaf nitrogen content, in response to drought. We found that experimental drought significantly increased community‐weighted means of specific leaf area and leaf nitrogen content at all North American sites and at the wetter East Asian sites, but drought decreased community‐weighted means of these traits at moderate to dry East Asian sites. Drought significantly decreased functional richness but increased functional evenness and dispersion at most East Asian and North American sites. Ecosystem drought sensitivity (percentage reduction in aboveground net primary productivity) positively correlated with community‐weighted means of specific leaf area and leaf nitrogen content and negatively correlated with functional diversity (i.e., richness) on an intercontinental scale, but results differed within regions. These findings highlight both broad generalities but also unique responses to drought of community‐weighted trait means as well as their functional diversity across grassland ecosystems.

    more » « less
    Free, publicly-accessible full text available February 1, 2025
  4. Free, publicly-accessible full text available October 1, 2024
  5. Global climate change is expected to cause more frequent extreme droughts in many parts of the world. Despite the crucial role of roots in water acquisition and plant survival, our understanding of ecosystem vulnerability to drought is primarily based on aboveground impacts. As return intervals between droughts decrease, root responses to one drought might alter responses to subsequent droughts, but this remains unresolved. We conducted a seven‐year experiment that imposed extreme drought (growing season precipitation reduced 66%) in a mesic grassland. Plots were droughted during years 1–2 (‘Drought 1'), or years 5–6 (‘Drought 2') or both. We quantified root production during year 6 (final year of Drought 2) and year 7 (first year after Drought 2), when all plots received ambient precipitation. We found that repeated drought decreased root mass production more than twice as much as a single drought (−63% versus −27%, respectively, relative to ambient precipitation). Root mass production of the dominant C4grassAndropogon gerardiidid not decrease significantly with either one or two droughts.A. gerardiiroot traits differed from subdominant species on average across all treatments, but drought did not alter root traits of eitherA. gerardiior the subdominant species (collectively). In year 6, root production in plots droughted 4 years ago had not recovered (−21% versus control), but root production recovered in all formerly droughted plots in year 7, when precipitation was above average. Our results highlight the complexity of root responses to drought. Drought‐induced reductions in root production can persist for years after drought and repeated drought can reduce production even further, but this does not preclude rapid recovery of root production in a wet year.

    more » « less
  6. Abstract. Future global changes will impact carbon (C) fluxes andpools in most terrestrial ecosystems and the feedback of terrestrial carboncycling to atmospheric CO2. Determining the vulnerability of C in ecosystems to future environmental change is thus vital for targeted land management and policy. The C capacity of an ecosystem is a function of its C inputs(e.g., net primary productivity – NPP) and how long C remains in the systembefore being respired back to the atmosphere. The proportion of C capacitycurrently stored by an ecosystem (i.e., its C saturation) provides informationabout the potential for long-term C pools to be altered by environmental andland management regimes. We estimated C capacity, C saturation, NPP, andecosystem C residence time in six US grasslands spanning temperature andprecipitation gradients by integrating high temporal resolution C pool andflux data with a process-based C model. As expected, NPP across grasslandswas strongly correlated with mean annual precipitation (MAP), yet Cresidence time was not related to MAP or mean annual temperature (MAT). We linksoil temperature, soil moisture, and inherent C turnover rates (potentiallydue to microbial function and tissue quality) as determinants of carbon residence time. Overall, we found that intermediates between extremes in moisture andtemperature had low C saturation, indicating that C in these grasslands maytrend upwards and be buffered against global change impacts. Hot and drygrasslands had greatest C saturation due to both small C inputs through NPPand high C turnover rates during soil moisture conditions favorable formicrobial activity. Additionally, leaching of soil C during monsoon eventsmay lead to C loss. C saturation was also high in tallgrass prairie due tofrequent fire that reduced inputs of aboveground plant material.Accordingly, we suggest that both hot, dry ecosystems and those frequentlydisturbed should be subject to careful land management and policy decisionsto prevent losses of C stored in these systems.

    more » « less
  7. Abstract

    Plant traits are useful proxies of plant strategies and can influence community and ecosystem responses to climate extremes, such as severe drought. Few studies, however, have investigated both the immediate and lagged effects of drought on community‐weighted mean (CWM) plant traits, with even less research on the relative roles of interspecific vs. intraspecific trait variability in such responses.

    We experimentally reduced growing season precipitation by 66% in two cold‐semi‐arid grassland sites in northern China for four consecutive years to explore the drought resistance of CWM traits as well as their recovery 2 years following the drought. In addition, we isolated the effects of both interspecific and intraspecific trait variability on shifts in CWM traits.

    At both sites, we observed significant effects of drought on interspecific and intraspecific trait variability which, in some cases, led to significant changes in CWM traits. For example, drought led to reduced CWM plant height and leaf phosphorous content, but increased leaf carbon content at both sites, with responses primarily due to intraspecific trait shifts. Surprisingly, these CWM traits recovered completely 2 years after the extreme drought. Intraspecific trait variability influenced CWM traits via both positive and negative covariation with interspecific trait variability during drought and recovery phases.

    These findings highlight the important role of interspecific and intraspecific trait variability in driving the response and recovery of CWM traits following extreme, prolonged drought.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  8. Abstract

    Seeds provide the basis of genetic diversity in perennial grassland communities and their traits may influence ecosystem resistance to extreme drought. However, we know little about how drought effects the community functional composition of seed traits and the corresponding implications for ecosystem resistance to drought.

    We experimentally removed 66% of growing season precipitation for 4 years across five arid and semi‐arid grasslands in northern China and assessed how this multi‐year drought impacted community‐weighted means (CWMs) of seed traits, seed trait functional diversity and above‐ground net primary productivity (ANPP).

    Experimental drought had limited effects on CWM traits and the few effects that did occur varied by site and year. For three separate sites, and in different years, drought reduced seed length and phosphorus content but increased both seed and seed‐coat thickness. Additionally, drought led to increased seed functional evenness, divergence, dispersion and richness, but only in some sites, and mostly in later years following cumulative effects of water limitation. However, we observed a strong negative relationship between drought‐induced reductions in ANPP and CWMs of seed‐coat thickness, indicating that a high abundance of dominant species with thick seeds may increase ecosystem resistance to drought. Seed trait functional diversity was not significantly predictive of ANPP, providing little evidence for a diversity effect.

    Our results suggest that monitoring community composition with a focus on seed traits may provide a valuable indicator of ecosystem resistance to future droughts despite inconsistent responses of seed trait composition overall. This highlights the importance of developing a comprehensive seed and reproductive traits database for arid and semi‐arid grassland biomes.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less
  9. null (Ed.)