- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Knapp, Kaitlin (3)
-
Wolynes, Peter G. (3)
-
Cheung, Margaret S. (1)
-
Davtyan, Aram (1)
-
Ezerski, Jacob C. (1)
-
Le, Kyle N. (1)
-
Leite, Vitor B. (1)
-
Lu, Wei (1)
-
Nde, Jules (1)
-
Oliveira, Antonio B. (1)
-
Onuchic, José N. (1)
-
Safari, Mohammad S. (1)
-
Sanches, Murilo N. (1)
-
Schafer, Nicholas P. (1)
-
Vekilov, Peter G. (1)
-
Xu, Yuechuan (1)
-
Zhang, Pengzhi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Nde, Jules; Zhang, Pengzhi; Ezerski, Jacob C.; Lu, Wei; Knapp, Kaitlin; Wolynes, Peter G.; Cheung, Margaret S. (, Frontiers in Molecular Biosciences)Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca 2+ ), or vice versa, may provide insight into how Ca 2+ -CaM selects its target binding proteins. However, modeling of Ca 2+ -CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca 2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca 2+ . This feature that underlies the reciprocal relation between Ca 2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca 2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca 2+ binding in future studies.more » « less
-
Xu, Yuechuan; Knapp, Kaitlin; Le, Kyle N.; Schafer, Nicholas P.; Safari, Mohammad S.; Davtyan, Aram; Wolynes, Peter G.; Vekilov, Peter G. (, Proceedings of the National Academy of Sciences)Amyloid fibrillization is an exceedingly complex process in which incoming peptide chains bind to the fibril while concertedly folding. The coupling between folding and binding is not fully understood. We explore the molecular pathways of association of Aβ40 monomers to fibril tips by combining time-resolved in situ scanning probe microscopy with molecular modeling. The comparison between experimental and simulation results shows that a complex supported by nonnative contacts is present in the equilibrium structure of the fibril tip and impedes fibril growth in a supersaturated solution. The unraveling of this frustrated state determines the rate of fibril growth. The kinetics of growth of freshly cut fibrils, in which the bulk fibril structure persists at the tip, complemented by molecular simulations, indicate that this frustrated complex comprises three or four monomers in nonnative conformations and likely is contained on the top of a single stack of peptide chains in the fibril structure. This pathway of fibril growth strongly deviates from the common view that the conformational transformation of each captured peptide chain is templated by the previously arrived peptide. The insights into the ensemble structure of the frustrated complex may guide the search for suppressors of Aβ fibrillization. The uncovered dynamics of coupled structuring and assembly during fibril growth are more complex than during the folding of most globular proteins, as they involve the collective motions of several peptide chains that are not guided by a funneled energy landscape.more » « less
An official website of the United States government
