skip to main content

Search for: All records

Creators/Authors contains: "Knievel, Jason C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Urban canopy models (UCMs) in mesoscale numerical weather prediction models need evaluation to understand biases in urban environments under a range of conditions. The authors evaluate a new drag formula in the Weather Research and Forecasting (WRF) model’s multilayer UCM, the Building Effect Parameterization combined with the Building Energy Model (BEP+BEM), against both in-situ measurements in the urban environment as well as simulations with a simple bulk scheme and BEP+BEM using the old drag formula. The new drag formula varies with building packing density, while the old drag formula is constant. The case study is a strong cold frontal passage that occurred in Houston during the winter of 2017, causing high winds. It is found that both BEP+BEM simulations have lower peak wind speeds, consistent with near-surface measurements, while the bulk simulation has winds that are too strong. The constant-drag BEP+BEM simulation has a near-zero wind speed bias, while the new-drag simulation has a negative bias. Although the focus is on the impact of drag on the urban wind speeds, both BEP+BEM simulations have larger negative biases in the near-surface temperature than the bulk-scheme simulation. Reasons for the different performances are discussed. 
    more » « less
  2. Abstract

    Populated urban areas along many coastal regions are vulnerable to landfalling tropical cyclones (TCs). To the detriment of surface parameterizations in mesoscale models, the complexities of turbulence at high TC wind speeds in urban canopies are presently poorly understood. Thus, this study explores the impacts of urban morphology on TC-strength winds and boundary layer turbulence in landfalling TCs. To better quantify how urban structures interact with TC winds, large-eddy simulations (LESs) are conducted with the Cloud Model 1 (CM1). This implementation of CM1 includes immersed boundary conditions (IBCs) to represent buildings and eddy recycling to maintain realistic turbulent flow perturbations. Within the IBCs, an idealized coastal city with varying scales is introduced. TC winds impinge perpendicularly to the urbanized coastline. Numerical experiments show that buildings generate distinct, intricate flow patterns that vary significantly as the city structure is varied. Urban IBCs produce much stronger turbulent kinetic energy than is produced by conventional surface parameterizations. Strong effective eddy viscosity due to resolved eddy mixing is displayed in the wake of buildings within the urban canopy, while deep and enhanced effective eddy viscosity is present downstream. Such effects are not seen in a comparison LES using a simple surface parameterization with high roughness values. Wind tunneling effects in streamwise canyons enhance pedestrian-level winds well beyond what is possible without buildings. In the arena of regional mesoscale modeling, this type of LES framework with IBCs can be used to improve parameters in surface and boundary layer schemes to more accurately represent the drag coefficient and the eddy viscosity in landfalling TC boundary layers.

    Significance Statement

    This is among the first large-eddy simulation model studies to examine the impacts of tropical cyclone–like winds around explicitly resolved buildings. This work is a step forward in bridging the gap between engineering studies that use computational fluid dynamics models or laboratory experiments for flow through cities and mesoscale model simulations of landfalling tropical cyclones that use surface parameterizations specialized for urban land use.

    more » « less
  3. null (Ed.)
    Abstract The simulated winds within the urban canopy of landfalling tropical cyclones are sensitive to the representation of the planetary-boundary and urban-canopy layers in numerical weather prediction models. In order to assess the sub-grid-scale parameterizations of these layers, mesoscale model simulations were executed and evaluated against near-surface observations as the outer wind field of Hurricane Irma (2017) interacted with the built-up region from downtown Miami northward to West Palm Beach. Four model simulations were examined, comprised of two different planetary boundary layer (PBL) parameterizations (a local closure scheme with turbulent kinetic energy prediction and a nonlocal closure scheme) and two different urban canopy models (UCMs) [a zeroth order bulk scheme and a multilayer Building Effect Parameterization (BEP) that mimics the three-dimensionality of buildings]. Overall, the simulated urban canopy winds were weakly sensitive to the PBL scheme and strongly sensitive to the UCM. The bulk simulations compared most favorably to an analyzed wind swath in the urban environment, while the BEP simulations had larger negative biases in the same region. There is uncertainty in magnitude of the urban environment biases due to the lack of many urban sheltered measurements in the wind swath analysis. Biases in the rural environment were similar among the bulk and BEP simulations. An improved comparison with the analyzed wind swath in the urban region was obtained by reducing the drag coefficient in BEP in one of the PBL schemes. The usefulness of BEP was demonstrated in its ability to predict realistic heterogeneous near-surface velocity patterns in urban regions. 
    more » « less
  4. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less