skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Knott, Alistair"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The new wave of ‘foundation models’—general-purpose generative AI models, for production of text (e.g., ChatGPT) or images (e.g., MidJourney)—represent a dramatic advance in the state of the art for AI. But their use also introduces a range of new risks, which has prompted an ongoing conversation about possible regulatory mechanisms. Here we propose a specific principle that should be incorporated into legislation: that any organization developing a foundation model intended for public use must demonstrate a reliabledetection mechanismfor the content it generates, as a condition of its public release. The detection mechanism should be made publicly available in a tool that allows users to query, for an arbitrary item of content, whether the item was generated (wholly or partly) by the model. In this paper, we argue that this requirement is technically feasible and would play an important role in reducing certain risks from new AI models in many domains. We also outline a number of options for the tool’s design, and summarize a number of points where further input from policymakers and researchers would be required. 
    more » « less
  2. Recent advances in Neural Radiance Field (NeRF)-based methods have enabled high-fidelity novel view synthesis for video with dynamic elements. However, these methods often require expensive hardware, take days to process a second-long video and do not scale well to longer videos. We create an end-to-end pipeline for creating dynamic 3D video from a monocular video that can be run on consumer hardware in minutes per second of footage, not days. Our pipeline handles the estimation of the camera parameters, depth maps, 3D reconstruction of dynamic foreground and static background elements, and the rendering of the 3D video on a computer or VR headset. We use a state-of-the-art visual transformer model to estimate depth maps which we use to scale COLMAP poses and enable RGB-D fusion with estimated depth data. In our preliminary experiments, we rendered the output in a VR headset and visually compared the method against ground-truth datasets and state-of-the-art NeRF-based methods. 
    more » « less