Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We analyse the motion of a flagellated bacterium in a two-fluid medium using slender body theory. The two-fluid model is useful for describing a body moving through a complex fluid with a microstructure whose length scale is comparable to the characteristic scale of the body. This is true for bacterial motion in biological fluids (entangled polymer solutions), where the entanglement results in a porous microstructure with typical pore diameters comparable to or larger than the flagellar bundle diameter, but smaller than the diameter of the bacterial head. Thus, the polymer and solvent satisfy different boundary conditions on the flagellar bundle and move with different velocities close to it. This gives rise to a screening length$$L_B$$within which the fluids exchange momentum and the relative velocity between the two fluids decays. In this work, both the solvent and polymer of the two-fluid medium are modelled as Newtonian fluids with different viscosities$$\mu _s$$and$$\mu _p$$(viscosity ratio$$\lambda = \mu _p/\mu _s$$), thereby capturing the effects solely introduced by the microstructure of the complex fluid. From our calculations, we observe an increased drag anisotropy for a rigid, slender flagellar bundle moving through this two-fluid medium, resulting in an enhanced swimming velocity of the organism. The results are sensitive to the interaction between the bundle and the polymer, and we discuss two physical scenarios corresponding to two types of interaction. Our model provides an explanation for the experimentally observed enhancement of swimming velocity of bacteria in entangled polymer solutions and motivates further experimental investigations.more » « lessFree, publicly-accessible full text available December 25, 2025
-
The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations.more » « less
-
A finite difference scheme is used to develop a numerical method to solve the flow of an unbounded viscoelastic fluid with zero to moderate inertia around a prolate spheroidal particle. The equations are written in prolate spheroidal coordinates, and the shape of the particle is exactly resolved as one of the coordinate surfaces representing the inner boundary of the computational domain. As the prolate spheroidal grid is naturally clustered near the particle surface, good resolution is obtained in the regions where the gradients of relevant flow variables are most significant. This coordinate system also allows large domain sizes with a reasonable number of mesh points to simulate unbounded fluid around a particle. Changing the aspect ratio of the inner computational boundary enables simulations of different particle shapes ranging from a sphere to a slender fiber. Numerical studies of the latter particle shape allow testing of slender body theories. The mass and momentum equations are solved with a Schur complement approach allowing us to solve the zero inertia case necessary to isolate the viscoelastic effects. The singularities associated with the coordinate system are overcome using L’Hopital’s rule. A straightforward imposition of conditions representing a time-varying combination of linear flows on the outer boundary allows us to study various flows with the same computational domain geometry. For the special but important case of zero fluid and particle inertia we obtain a novel formulation that satisfies the force- and torque-free constraint in an iteration-free manner. The numerical method is demonstrated for various flows of Newtonian and viscoelastic fluids around spheres and spheroids (including those with large aspect ratio). Good agreement is demonstrated with existing theoretical and numerical results.more » « less
-
The rheology of suspensions of rings (tori) rotating in an unbounded low Reynolds number simple shear flow is calculated using numerical simulations at dilute particle number densities ( n ≪ 1 ). Suspensions of non-Brownian rings are studied by computing pair interactions that include hydrodynamic interactions modeled using slender body theory and particle collisions modeled using a short-range repulsive force. Particle contact and hydrodynamic interactions were found to have comparable influences on the steady-state Jeffery orbit distribution. The average tilt of the ring away from the flow-vorticity plane increased during pairwise interactions compared to the tilt associated with Jeffery rotation and the steady-state orbit distribution. Particle stresses associated with the increased tilt during the interaction were found to be comparable to the stresses induced directly by particle contact forces and the hydrodynamic velocity disturbances of other particles. The hydrodynamic diffusivity coefficients in the gradient and vorticity directions were also obtained and were found to be two orders of magnitude larger than the corresponding values in fiber suspensions at the same particle concentrations. Rotary Brownian dynamics simulations of isolated Brownian rings were used to understand the shear rate dependence of suspension rheology. The orbit distribution observed in the regime of weak Brownian motion, P e ≫ ϕ T − 3, was surprisingly similar to that obtained from pairwise interaction calculations of non-Brownian rings. Here, the Peclet number P e is the ratio of the shear rate and the rotary diffusivity of the particle and ϕ T is the effective inverse-aspect ratio of the particle (approximately equal to 2 π times the inverse of its non-dimensional Jeffery time period). Thus, the rheology results obtained from pairwise interactions should retain accuracy even for weakly Brownian rings ( n ≪ 1 and ϕ T − 3 ≪ P e ).more » « less
-
A recent experiment by Wanget al.(Soft Matt., vol. 17, 2021, pp. 2985–2993) shows that a self-propelled compound drop in a surfactant-laden solution can autonomously change its motion from a straight line to a spiraling trajectory, enhancing its capability for chemical detection, catalytic reaction and pollutant removal in a large fluid region. To understand the underlying physics of this peculiar motion, we develop a two-dimensional minimal model to study the swimming dynamics of a compound droplet driven by a self-generated Marangoni stress. We find that, depending on the Péclet number ($$Pe$$) and the viscosity and volume ratios of the two compound phases, the drop can swim in a variety of trajectories, including straight lines, circles, zigzag curves and chaotic trajectories. The drop moves in circles when its two components have comparable volumes. Otherwise, it shows other types of motions depending on$$Pe$$. Our simulation results for the circular motion at small$$Pe$$are qualitatively comparable to the experiment. The transition between zigzag and circular trajectories is mainly determined by the orientation of high-order modes with respect to the drop's swimming direction. For most compound drops, the speed decays as$$Pe^{-1/3}$$at high Péclet numbers as it does for a single-phase drop. A drop with two equal components undergoes a run-and-reorient motion due to the competition between the even and odd modes.more » « less
-
null (Ed.)The collisions in a dilute polydisperse suspension of sub-Kolmogorov spheres with negligible inertia settling in a turbulent flow and interacting through hydrodynamics including continuum breakdown on close approach are studied. A statistically significant decrease in ideal collision rate without gravity is resolved via a Lagrangian stochastic velocity-gradient model at Taylor microscale Reynolds number larger than those accessible by current direct numerical simulation capabilities. This arises from the difference between the mean inward velocity and the root-mean-square particle relative velocity. Differential sedimentation, comparable to the turbulent shear relative velocity, but minimally influencing the sampling of the velocity gradient, diminishes the Reynolds number dependence and enhances the ideal collision rate i.e. the rate without interactions. The collision rate is retarded by hydrodynamic interactions between sphere pairs and is governed by non-continuum lubrication as well as full continuum hydrodynamic interactions at larger separations. The collision efficiency (ratio of actual to ideal collision rate) depends on the relative strength of differential sedimentation and turbulent shear, the size ratio of the interacting spheres and the Knudsen number (defined as the ratio of the mean-free path of the gas to the mean radius of the interacting spheres). We develop an analytical approximation to concisely report computed results across the parameter space. This accurate closed form expression could be a critical component in computing the evolution of the size distribution in applications such as water droplets in clouds or commercially valuable products in industrial aggregators.more » « less
-
null (Ed.)Collisions in a dilute polydisperse suspension of spheres of negligible inertia interacting through non-continuum hydrodynamics and settling in a slow uniaxial compressional flow are studied. The ideal collision rate is evaluated as a function of the relative strength of gravity and uniaxial compressional flow and it deviates significantly from a linear superposition of these driving terms. This non-trivial behaviour is exacerbated by interparticle interactions based on uniformly valid non-continuum hydrodynamics, that capture non-continuum lubrication at small separations and full continuum hydrodynamic interactions at larger separations, retarding collisions driven purely by sedimentation significantly more than those driven purely by the linear flow. While the ideal collision rate is weakly dependent on the orientation of gravity with the axis of compression, the rate including hydrodynamic interactions varies by more than $$100\,\%$$ with orientation. This dramatic shift can be attributed to complex trajectories driven by interparticle interactions that prevent particle pairs from colliding or enable a circuitous path to collision. These and other important features of the collision process are studied in detail using trajectory analysis at near unity and significantly smaller than unity size ratios of the interacting spheres. For each case analysis is carried for a large range of relative strengths and orientations of gravity to the uniaxial compressional flow, and Knudsen numbers (ratio of mean free path of the media to mean radius).more » « less