Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract Late Pleistocene glacial terminations are caused by rising atmospheric CO2occurring in response to atmospheric and ocean circulation changes induced by increased discharge from Northern Hemisphere ice sheets. While climate records place glacial terminations coincident with decreasing orbital precession, it remains unclear why a specific precession minimum causes a termination. We compare the orbital and ice volume configuration at each precession minima over the last million years to demonstrate that eccentricity, through its control on precession amplitude, period and coherence with obliquity, along with ice sheet size, determine whether a given precession minimum will cause a termination. We also demonstrate how eccentricity controls obliquity maxima and precession minima coherence, varying the duration of glaciations. Glaciations lasting ∼100 thousand years are controlled by Earth's eccentricity cycle of the same period, while the shortest (20–40 ka) and longest (155 ka) occupy the maxima and minimums of the 400 thousand year eccentricity cycle.more » « less
-
The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of protons on target in (anti)neutrino mode, the analysis finds a exclusion of conservation (defined as ) and a exclusion of the inverted mass ordering. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026