Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The vision system of arthropods such as insects and crustaceans is based on the compound-eye architecture, consisting of a dense array of individual imaging elements (ommatidia) pointing along different directions. This arrangement is particularly attractive for imaging applications requiring extreme size miniaturization, wide-angle fields of view, and high sensitivity to motion. However, the implementation of cameras directly mimicking the eyes of common arthropods is complicated by their curved geometry. Here, we describe a lensless planar architecture, where each pixel of a standard image-sensor array is coated with an ensemble of metallic plasmonic nanostructures that only transmits light incident along a small geometrically-tunable distribution of angles. A set of near-infrared devices providing directional photodetection peaked at different angles is designed, fabricated, and tested. Computational imaging techniques are then employed to demonstrate the ability of these devices to reconstruct high-quality images of relatively complex objects.more » « less
-
Abstract Optical metasurfaces have been widely investigated in recent years as a means to tailor the wavefronts of externally incident light for passive device applications. At the same time, their use in active optoelectronic devices such as light emitters is far less established. This work explores their ability to control the radiation properties of a nearby continuous ensemble of randomly oriented incoherent dipole sources via near‐field interactions. Specifically, a film of colloidal quantum dots is deposited on a plasmonic metasurface consisting of a 1D array of metallic nanoantennas on a metal film. The array is designed to introduce a linear phase profile upon reflection, and a bi‐periodic nanoparticle arrangement is introduced to ensure adequate sampling of the desired phase gradient. Highly directional radiation patterns are correspondingly obtained from the quantum dots at an enhanced emission rate. The underlying radiation mechanism involves the near‐field excitation of surface plasmon polaritons at the metal film, and their selective diffractive scattering by the metasurface into well‐collimated beams along predetermined geometrically tunable directions. These results underscore the distinctive ability of metasurfaces to control radiation properties directly at the source level, which is technologically significant for the continued miniaturization and large‐scale integration of optoelectronic devices.more » « less