skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kohay, Hagay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen fertilizer delivery inefficiencies limit crop productivity and contribute to environmental pollution. Herein, we developed Zn- and Fe-doped hydroxyapatite nanomaterials (ZnHAU, FeHAU) loaded with urea (∼26% N) through hydrogen bonding and metal-ligand interactions. The nanomaterials attach to the leaf epidermal cuticle and localize in the apoplast of leaf epidermal cells, triggering a slow N release at acidic conditions (pH 5.8) that promote wheat (Triticum aestivum) growth and increased N uptake compared to conventional urea fertilizers. ZnHAU and FeHAU exhibited prolonged N release compared to urea in model plant apoplast fluid pH in vitro (up to 2 days) and in leaf membranes in plants (up to 10 days) with a high N retention (32% to 53%) under simulated high rainfall events (50 mm). Foliar N delivery doses of up to 4% as ZnHAU and FeHAU did not induce toxicity in plant cells. The foliar-applied ZnHAU and FeHAU enhanced fresh and dry biomass by ∼214% and ∼161%, and N uptake by ∼108% compared to foliar-applied urea under low soil N conditions in greenhouse experiments. Controlled N release by leaf-attached nanomaterials improves N delivery and use efficiency in crop plants, creating nanofertilizers with reduced environmental impact. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026