skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kohut, Josh T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Palmer Deep submarine canyon on the western Antarctic Peninsula hosts permanent penguin breeding rookeries and is characterized by elevated chlorophyll‐a compared to the surrounding continental shelf. Particle residence times within the canyon are shorter than phytoplankton doubling times, which points to the ecosystem's productivity being tied primarily to advection of externally generated biomass into the canyon. This view is supported by recent observational studies showing alignment of attractive flow structures with phytoplankton patches. While residence times are short, they vary in space and are longer than the timescale for submesoscale instabilities with strong vertical motions (an inertial period), allowing for biological sources to be regionally or episodically important. Here we use measurements of ocean surface velocities (from high‐frequency radars) and chlorophyll (from satellites) to calculate the Eulerian, Lagrangian, and horizontal advection terms of the surface chlorophyll budget. The Lagrangian term (including biological sources) is generally comparable in magnitude to advection, but the latter is more important on the canyon's western flank. We then compare joint distributions of relative vorticity and strain conditioned on a particle's net chlorophyll change. In general, parcels experiencing a net increase (decrease) in chlorophyll experience greater cyclonic (anticyclonic) vorticity. Although high‐vorticity features significantly influence parcel motion, trajectories generally align with an estimate of the balanced flow, which is often characterized by a cyclone over the central canyon and eastern flank. Without subsurface data we cannot confirm whether the Lagrangian change truly indicates biological accumulation but we offer some interpretations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Food resources in the ocean are often found in low densities, and need to be concentrated for efficient consumption. This is done in part by oceanographic features transporting and locally concentrating plankton, creating a highly patchy resource. Lagrangian approaches applied to ocean dynamics can identify these transport features, linking Lagrangian transport and spatial ecology. However, little is known about how Lagrangian approaches perform in ageostrophic coastal flows. This study evaluates two Lagrangian Coherent Structure metrics against the distribution of phytoplankton; Finite Time Lyapunov Exponents (FTLE) and Relative Particle Density (RPD). FTLE and RPD are applied to High Frequency Radar (HFR) observed surface currents within a biological hotspot, Palmer Deep Canyon Antarctica. FTLE and RPD identify different transport patterns, with RPD mapping single particle trajectories and FTLE tracking relative motion of paired particles. Simultaneous measurements of circulation and phytoplankton were gathered through the integration of vessel and autonomous glider surveys within the HFR footprint. Results show FTLE better defined phytoplankton patches compared to RPD, with the strongest associations occurring in stratified conditions, suggesting that phytoplankton congregate along FTLE ridges in coastal flows. This quantified relationship between circulation and phytoplankton patches emphasizes the role of transport in the maintenance of coastal food webs. 
    more » « less
  3. null (Ed.)