Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 21, 2026
-
Abstract Nonlinear oscillations in micro- and nanoelectromechanical systems have emerged as an exciting research area in recent years due to their promise in realizing low-power, scalable, and reconfigurable mechanical memory and logic devices. Here, we report ultralow-power mechanical memory operations utilizing the nonlinear oscillation regime of GaN microcantilevers with embedded piezotransistive AlGaN/GaN heterostructure field effect transistors as highly sensitive deflection transducers. Switching between the high and low oscillatory states of the nonlinear oscillation regime was demonstrated using a novel phase-controlled opto-mechanical excitation setup, utilizing a piezo actuator and a pulsed laser as the primary and secondary excitation sources, respectively. Laser-based photoacoustic excitation was amplified through plasmonic absorption in Au nanoparticles deposited on a transistor. Thus, the minimum switching energy required for reliable memory operations was reduced to less than a picojoule (pJ), which translates to one of the lowest ever reported, when normalized for mass.more » « less
-
Development of compact and fast modulators of infrared light has garnered strong research interests in recent years due to their potential applications in communication, imaging, and sensing. In this study, electric field induced fast modulation near-infrared light caused by phase change in VO2thin films grown on GaN suspended membranes has been reported. It was observed that metal insulator transition caused by temperature change or application of electric field, using an interdigitated finger geometry, resulted in 7% and 14% reduction in transmitted light intensity at near-infrared wavelengths of 790 and 1550 nm, respectively. Near-infrared light modulation has been demonstrated with voltage pulse widths down to 300 µs at 25 V magnitude. Finite element simulations performed on the suspended membrane modulator indicate a combination of the Joule heating and electric field is responsible for the phase transition.more » « less