skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kolhekar, Ketaki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Micromachining of glass has gained importance due to numerous applications of glass in microfluidics, optics, electronics, and biotechnology industry. Electrochemical discharge machining (ECDM) is an emerging nontraditional process which has the potential for micromachining of glass with minimal surface damages. Material removal during the machining of glass by ECDM involves thermal machining by electrical discharges between the tool and the gas film. The energy of these discharges is influenced by the gas film characteristics and affects the machining results. In this study, a combined approach of finite element simulation and experimentation is used to study the ECDM process to understand the impact of gas film characteristics on the overcut in machining. The multiphase simulation setup incorporates a combined electrochemical system of glass and electrolyte. The changes in the gas film characteristics due to the variations in the level of electrolyte and the corresponding changes in the overcut are studied. It was observed that the gas film thickness increased with an increase in the level of electrolyte and the gas film stability showed an opposite trend. This resulted in an increase in the overcut in the machining with the increase in the level of electrolyte. This trend observed in the simulation was validated with experimentation. 
    more » « less