skip to main content

Search for: All records

Creators/Authors contains: "Kominoski, John S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2023
  2. Free, publicly-accessible full text available October 1, 2023
  3. Free, publicly-accessible full text available October 1, 2023
  4. abstract Coastal ecosystems play a disproportionately large role in society, and climate change is altering their ecological structure and function, as well as their highly valued goods and services. In the present article, we review the results from decade-scale research on coastal ecosystems shaped by foundation species (e.g., coral reefs, kelp forests, coastal marshes, seagrass meadows, mangrove forests, barrier islands) to show how climate change is altering their ecological attributes and services. We demonstrate the value of site-based, long-term studies for quantifying the resilience of coastal systems to climate forcing, identifying thresholds that cause shifts in ecological state, and investigating the capacity of coastal ecosystems to adapt to climate change and the biological mechanisms that underlie it. We draw extensively from research conducted at coastal ecosystems studied by the US Long Term Ecological Research Network, where long-term, spatially extensive observational data are coupled with shorter-term mechanistic studies to understand the ecological consequences of climate change.
    Free, publicly-accessible full text available August 16, 2023
  5. Planktonic microbial communities mediate many vital biogeochemical processes in wetland ecosystems, yet compared to other aquatic ecosystems, like oceans, lakes, rivers or estuaries, they remain relatively underexplored. Our study site, the Florida Everglades (USA)—a vast iconic wetland consisting of a slow-moving system of shallow rivers connecting freshwater marshes with coastal mangrove forests and seagrass meadows—is a highly threatened model ecosystem for studying salinity and nutrient gradients, as well as the effects of sea level rise and saltwater intrusion. This study provides the first high-resolution phylogenetic profiles of planktonic bacterial and eukaryotic microbial communities (using 16S and 18S rRNA gene amplicons) together with nutrient concentrations and environmental parameters at 14 sites along two transects covering two distinctly different drainages: the peat-based Shark River Slough (SRS) and marl-based Taylor Slough/Panhandle (TS/Ph). Both bacterial as well as eukaryotic community structures varied significantly along the salinity gradient. Although freshwater communities were relatively similar in both transects, bacterioplankton community composition at the ecotone (where freshwater and marine water mix) differed significantly. The most abundant taxa in the freshwater marshes include heterotrophic Polynucleobacter sp. and potentially phagotrophic cryptomonads of the genus Chilomonas, both of which could be key players in the transfer of detritus-based biomass tomore »higher trophic levels.« less
  6. Coastal wetlands are globally important stores of carbon (C). However, accelerated sea-level rise (SLR), increased saltwater intrusion, and modified freshwater discharge can contribute to the collapse of peat marshes, converting coastal peatlands into open water. Applying results from multiple experiments from sawgrass (Cladium jamaicense)-dominated freshwater and brackish water marshes in the Florida Coastal Everglades, we developed a system-level mechanistic peat elevation model (EvPEM). We applied the model to simulate net ecosystem C balance (NECB) and peat elevation in response to elevated salinity under inundation and drought exposure. Using a mass C balance approach, we estimated net gain in C and corresponding export of aquatic fluxes ( ) in the freshwater marsh under ambient conditions (NECB = 1119 ± 229 gC m−2 year−1; FAQ = 317 ± 186 gC m−2 year−1). In contrast, the brackish water marsh exhibited substantial peat loss and aquatic C export with ambient (NECB = −366 ± 15 gC m−2 year−1; FAQ = 311 ± 30 gC m−2 year−1) and elevated salinity (NECB = −594 ± 94 gC m−2 year−1; FAQ = 729 ± 142 gC m−2 year−1) under extended exposed conditions. Further, mass balance suggests a considerable decline in soil C and corresponding elevation loss with elevated salinity and seasonal dry-down. Applying EvPEM, we developed critical marsh net primarymore »productivity (NPP) thresholds as a function of salinity to simulate accumulating, steady-state, and collapsing peat elevations. The optimization showed that ~150–1070 gC m−2 year−1 NPP could support a stable peat elevation (elevation change ≈ SLR), with the corresponding salinity ranging from 1 to 20 ppt under increasing inundation levels. The C budgeting and modeling illustrate the impacts of saltwater intrusion, inundation, and seasonal dry-down and reduce uncertainties in understanding the fate of coastal peat wetlands with SLR and freshwater restoration. The modeling results provide management targets for hydrologic restoration based on the ecological conditions needed to reduce the vulnerability of the Everglades' peat marshes to collapse. The approach can be extended to other coastal peatlands to quantify C loss and improve understanding of the influence of the biological controls on wetland C storage changes for coastal management.« less
  7. Free, publicly-accessible full text available April 1, 2023