skip to main content

Search for: All records

Creators/Authors contains: "Komor, Alexis C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the advent of recombinant DNA technology in the 1970s, the idea of using gene therapies to treat human genetic diseases captured the interest and imagination of scientists around the world. Years later, enabled largely by the development of CRISPR-based genome editing tools, the field has exploded, with academic labs, startup biotechnology companies, and large pharmaceutical corporations working in concert to develop life-changing therapeutics. In this Essay, we highlight base editing technologies and their development from bench to bedside. Base editing, first reported in 2016, is capable of installing C•G to T•A and A•T to G•C point mutations, while largely circumventing some of the pitfalls of traditional CRISPR/Cas9 gene editing. Despite their youth, these technologies have been widely used by both academic labs and therapeutics-based companies. Here, we provide an overview of the mechanics of base editing and its use in clinical trials.

    more » « less
  2. The flexibility and precision of CRISPR-Cas9 and related technologies have made these genome editing tools increasingly popular in agriculture, medicine, and basic science research for the past decade. Genome editing will continue to be relevant and utilized across diverse scientific fields in the future. Given this, students should be introduced to genome editing technologies and encouraged to consider their ethical implications early on in precollege biology curricula. Furthermore, instruction on this topic presents an opportunity to create partnerships between researchers and educators at the K-12 levels that can strengthen student engagement in science, technology, engineering, and mathematics. To this end, we present a 3-day student-centered learning program to introduce high school students to genome editing technologies through a hands-on base editing experiment in Escherichia coli, accompanied by a relevant background lecture and facilitated ethics discussion. This unique partnership aims to educate students and provides a framework for research institutions to implement genome editing outreach programs at local high schools. We have included all requisite materials, including lecture slides, worksheets, experimental protocols, and suggestions on active learning strategies for others to reproduce our program with their local communities. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Base editors (BEs) are genome editing agents that install point mutations with high efficiency and specificity. Due to their reliance on uracil and inosine DNA damage intermediates (rather than double-strand DNA breaks, or DSBs), it has been hypothesized that BEs rely on more ubiquitous DNA repair pathways than DSB-reliant genome editing methods, which require processes that are only active during certain phases of the cell cycle. We report here the first systematic study of the cell cycle-dependence of base editing using cell synchronization experiments. We find that nickase-derived BEs (which introduce DNA backbone nicks opposite the uracil or inosine base) function independently of the cell cycle, while non-nicking BEs are highly dependent on S-phase (DNA synthesis phase). We found that synchronization in G1 (growth phase) during the process of cytosine base editing causes significant increases in C•G to A•T “byproduct” introduction rates, which can be leveraged to discover new strategies for precise C•G to A•T base editing. We observe that endogenous expression levels of DNA damage repair pathways are sufficient to process base editing intermediates into desired editing outcomes, and the process of base editing does not significantly perturb transcription levels. Overall, our study provides mechanistic data demonstrating the robustness of nickase-derived BEs for performing genome editing across the cell cycle. 
    more » « less
  4. Abstract

    Programmable double-strand DNA breaks (DSBs) can be harnessed for precision genome editing through manipulation of the homology-directed repair (HDR) pathway. However, end-joining repair pathways often outcompete HDR and introduce insertions and deletions of bases (indels) at the DSB site, decreasing precision outcomes. It has been shown that indel sequences for a given DSB site are reproducible and can even be predicted. Here, we report a general strategy (the “double tap” method) to improve HDR-mediated precision genome editing efficiencies that takes advantage of the reproducible nature of indel sequences. The method simply involves the use of multiple gRNAs: a primary gRNA that targets the wild-type genomic sequence, and one or more secondary gRNAs that target the most common indel sequence(s), which in effect provides a “second chance” at HDR-mediated editing. This proof-of-principle study presents the double tap method as a simple yet effective option for enhancing precision editing in mammalian cells.

    more » « less
  5. Abstract

    Homing CRISPR gene drives could aid in curbing the spread of vector-borne diseases and controlling crop pest and invasive species populations due to an inheritance rate that surpasses Mendelian laws. However, this technology suffers from resistance alleles formed when the drive-induced DNA break is repaired by error-prone pathways, which creates mutations that disrupt the gRNA recognition sequence and prevent further gene-drive propagation. Here, we attempt to counteract this by encoding additional gRNAs that target the most commonly generated resistance alleles into the gene drive, allowing a second opportunity at gene-drive conversion. Our presented “double-tap” strategy improved drive efficiency by recycling resistance alleles. The double-tap drive also efficiently spreads in caged populations, outperforming the control drive. Overall, this double-tap strategy can be readily implemented in any CRISPR-based gene drive to improve performance, and similar approaches could benefit other systems suffering from low HDR frequencies, such as mammalian cells or mouse germline transformations.

    more » « less
  6. The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic: manufacturing, regulatory oversight and considerations for clinical trials that involve genome editing agents. 
    more » « less
  7. Abstract

    Base editors are genome editing tools that enable site‐specific base conversions through the chemical modification of nucleobases in DNA. Adenine base editors (ABEs) convert A ⋅ T to G ⋅ C base pairs in DNA by using an adenosine deaminase enzyme to modify target adenosines to inosine intermediates. Due to the lack of a naturally occurring adenosine deaminase that can modify DNA, ABEs were evolved from a tRNA‐deaminating enzyme, TadA. Previous experiments with an ABE comprising a wild‐type (wt) TadA showed no detectable activity on DNA, and directed evolution was therefore required to enable this enzyme to accept DNA as a substrate. Here we show that wtTadA can perform base editing in DNA in both bacterial and mammalian cells, with a strict sequence motif requirement of TAC. We leveraged this discovery to optimize a reporter assay to detect base editing levels as low as 0.01 %. Finally, we used this assay along with molecular dynamics simulations of full ABE:DNA complexes to better understand how the sequence recognition of mutant TadA variants change as they accumulate mutations to better edit DNA substrates.

    more » « less
  8. Abstract

    Base‐editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome‐editing methods that use DNA double‐strand breaks, such as zinc finger nucleases (ZFNs), transcription‐activator‐like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR‐associated protein 9 (CRISPR‐Cas9) system. This allows the generation of single‐nucleotide‐variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time‐ and resource‐effective manner. These single‐nucleotide‐variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype‐to‐phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base‐editing constructs, transfect adherent cells, quantify base‐editing efficiencies in bulk, and generate single‐nucleotide‐variant clonal cell lines. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Design and production of plasmids for base‐editing experiments

    Basic Protocol 2: Transfection of adherent cells and harvesting of genomic DNA

    Basic Protocol 3: Genotyping of harvested cells using Sanger sequencing

    Alternate Protocol 1: Next‐generation sequencing to quantify base editing

    Basic Protocol 4: Single‐cell isolation of base‐edited cells using FACS

    Alternate Protocol 2: Single‐cell isolation of base‐edited cells using dilution plating

    Basic Protocol 5: Clonal expansion to generate isogenic cell lines and genotyping of clones

    more » « less