skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Konar, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Smallholder agriculture is critical for current and future food security, yet quantifying the sources of smallholder yield variance remains a major challenge. Attributing yield variance to farmer management, as opposed to soil and weather constraints, is an important step to understanding the impact of farmer decision-making, in a context where smallholder farmers use a wide range of management practices and may have limited access to fertilizer. This study used a process-based crop model to simulate smallholder maize (Zea mays) yield at the district-level in Zambia and quantify the percent of yield variance (effect size) attributed to soil, weather, and three management inputs (cultivar, fertilizer, planting date). Effect sizes were calculated via an ANOVA variance decomposition. Further, to better understand the treatment effects of management practices, effect sizes were calculated both for all years combined and for individual years. We found that farmer management decisions explained 27–82 % of total yield variance for different agro-ecological regions in Zambia, primarily due to fertilizer impact. Fertilizer explained 45 % of yield variance for the average district, although its effect was much larger in northern districts of Zambia that typically have higher precipitation, where it explained 72 % of yield variance on average. When fixing a specific fertilizer amount, the “low-cost” management options of varying planting dates and cultivars explained 20–28 % of yield variance, with some regional variation. To better understand why management practices impact yield more in particular years, we performed a correlation analysis comparing yearly management effect sizes with four meteorologically based variables: total growing season precipitation, rainy season onset, extreme heat degree days, and longest dry spell. Results showed that fertilizer’s impact generally increased under favorable weather conditions, and planting date’s impact increased under adverse weather conditions. This study demonstrates how a national yield variance decomposition can be used to understand where specific management interventions would have a greater impact and can provide policymakers with quantification of soil, weather, and management effects. In addition, the variance composition can easily be adapted to a different range of management inputs, such as other cultivars or fertilizer quantities, and can also be used to assess the effect size of management adaptations under climate change. 
    more » « less
  2. Abstract Agriculture is the largest user of water in the United States. Yet, we do not understand the spatially resolved sources of irrigation water use (IWU) by crop. The goal of this study is to estimate crop‐specific IWU from surface water withdrawals (SWW), total groundwater withdrawals (GWW), and nonrenewable groundwater depletion (GWD). To do this, we employ the PCR‐GLOBWB 2 global hydrology model to partition irrigation information from the U.S. Geological Survey Water Use Database to specific crops across the Continental United States (CONUS). We incorporate high‐resolution input data on agricultural production and climate within the CONUS to obtain crop‐specific irrigation estimates for SWW, GWW, and GWD for 20 crops and crop groups from 2008 to 2020 at county spatial resolution. Over the study period, SWW decreased by 20%, while both GWW and GWD increased by 3%. On average, animal feed (alfalfa/hay) uses the most irrigation water across all water sources: 33 from SWW, 13 from GWW, and 10 km3/yr from GWD. Produce used less SWW (43%), but more GWW (57%), and GWD (27%) over the study time‐period. The largest changes in IWU for each water source between the years 2008 and 2020 are: rice (SWW decreased by 71%), sugar beets (GWW increased by 232%), and rapeseed (GWD increased by 405%). These results present the first national‐scale assessment of irrigation by crop, water source, and year. In total, we contribute nearly 2.5 million data points to the literature (3,142 counties; 13 years; 3 water sources; and 20 crops). 
    more » « less