- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kong, Lingping (3)
-
Gong, Jue (2)
-
Hu, Qingyang (2)
-
Liu, Gang (2)
-
Liu, Zhenxian (2)
-
Schaller, Richard D. (2)
-
Xu, Tao (2)
-
Yang, Wenge (2)
-
Balaish, Moran (1)
-
Kanatzidis, Mercouri G. (1)
-
Kim, Kun Joong (1)
-
Mao, Ho-kwang (1)
-
Mao, Ho‐kwang (1)
-
Rupp, Jennifer L. M. (1)
-
Stoumpos, Constantinos C. (1)
-
Wadaguchi, Masaki (1)
-
Yan, Shuai (1)
-
Zhang, Dongzhou (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Materials in metastable states, such as amorphous ice and supercooled condensed matter, often exhibit exotic phenomena. To date, achieving metastability is usually accomplished by rapid quenching through a thermodynamic path function, namely, heating−cooling cycles. However, heat can be detrimental to organic-containing materials because it can induce degradation. Alternatively, the application of pressure can be used to achieve metastable states that are inaccessible via heating−cooling cycles. Here we report metastable states of 2D organic−inorganic hybrid perovskites reached through structural amorphization under compression followed by recrystallization via decompression. Remarkably, such pressure-derived metastable states in 2D hybrid perovskites exhibit enduring bandgap narrowing by as much as 8.2% with stability under ambient conditions. The achieved metastable states in 2D hybrid perovskites via compression−decompression cycles offer an alternative pathway toward manipulating the properties of these “soft” materials.more » « less
-
Kim, Kun Joong ; Balaish, Moran ; Wadaguchi, Masaki ; Kong, Lingping ; Rupp, Jennifer L. M. ( , Advanced Energy Materials)
Abstract The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech‐historic evolution and rationally analyzing the transition from liquid‐based Li‐ion batteries (LIBs) to all‐solid‐state Li‐metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide‐based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide‐based cathodes and a Li‐metal anode, leading to limited performance for solid‐state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.
-
Liu, Gang ; Kong, Lingping ; Gong, Jue ; Yang, Wenge ; Mao, Ho‐kwang ; Hu, Qingyang ; Liu, Zhenxian ; Schaller, Richard D. ; Zhang, Dongzhou ; Xu, Tao ( , Advanced Functional Materials)