Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is significant interest in the utility of asymmetric nanoaperture arrays as substrates for the surface-enhanced detection, fluorescence, and imaging of individual molecules. This work introduces obliquely-cut, out-of-plane, coaxial layered structures on an aperture edge. We refer to these structures as nanofingernails, which emphasizes their curved, oblique, and out-of-plane features. Broadband coupling into chiral hybrid plasmon modes and helicity-dependent near-field scattering without circular dichroism are demonstrated. The unusually-broadband, multipolar modes of nanofingernail micropore structures exhibit phase retardation effects that may be useful for achieving spatial overlap at different frequencies. The nanofingernail geometry shows new potential for simultaneous polarization-enhanced hyperspectral imaging on apertured, plasmonic surfaces.more » « less
-
Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm−1for 2.5–3.9-μm-long NWs reveal a series of resonances due to the Fabry–Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to them= 3 andm= 4 Fabry–Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry–Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.more » « less
An official website of the United States government
