skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koomson, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Protonic ceramic electrochemical cells (PCECs) represent a promising class of solid‐state energy conversion devices capable of high‐efficiency hydrogen production and power generation. However, the practical deployment of planar PCECs is fundamentally constrained by severe structural deformation and mechanical failure during fabrication, stemming from asymmetric shrinkage between the thin electrolyte and the thick NiO‐based support layer. In this work, a functionally integrated, symmetry‐engineered double‐sided electrolyte (DE) design is unveiled, which not only suppresses thermally induced curvature but also unlocks significant gains in electrochemical performance and stability. This architecture intrinsically balances shrinkage dynamics across the cell bilaterally, enabling the fabrication of ultra‐flat 5 × 5 cm2cells with sub‐100 µm thickness variation. A numerical solid mechanics simulation is introduced to investigate and interpret this achievement. Beyond structural advantages, the DE configuration enhances the cell operational stability, delivering a low open‐circuit voltage degradation of 9.5 mV/100 h across 80 thermal cycles. This work establishes a compelling paradigm wherein architectural symmetry directly translates to both mechanical fidelity and functional enhancement, offering a promising route toward PCECs scale‐up. 
    more » « less
    Free, publicly-accessible full text available October 28, 2026