skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Koparkar, Chaitanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent work showed that compiling functional programs to use dense, serialized memory representations for recursive algebraic datatypes can yield significant constant-factor speedups for sequential programs. But serializing data in a maximally dense format consequently serializes the processing of that data, yielding a tension between density and parallelism. This paper shows that a disciplined, practical compromise is possible. We present Parallel Gibbon, a compiler that obtains the benefits of dense data formats and parallelism. We formalize the semantics of the parallel location calculus underpinning this novel implementation strategy, and show that it is type-safe. Parallel Gibbon exceeds the parallel performance of existing compilers for purely functional programs that use recursive algebraic datatypes, including, notably, abstract-syntax-tree traversals as in compilers. 
    more » « less