skip to main content

Search for: All records

Creators/Authors contains: "Koposov, Sergey E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Accreted stellar populations are comprised of the remnants of destroyed galaxies, and often dominate the ‘stellar haloes’ of galaxies such as the Milky Way (MW). This ensemble of external contributors is a key indicator of the past assembly history of a galaxy. We introduce a novel statistical method that uses the unbinned metallicity distribution function (MDF) of a stellar population to estimate the mass spectrum of its progenitors. Our model makes use of the well-known mass–metallicity relation of galaxies and assumes Gaussian MDF distributions for individual progenitors: the overall MDF is thus a mixture of MDFs from smaller galaxies. We apply the method to the stellar halo of the MW, as well as the classical MW satellite galaxies. The stellar components of the satellite galaxies have relatively small sample sizes, but we do not find any evidence for accreted populations with L > Lhost/100. We find that the MW stellar halo has N ∼ 1−3 massive progenitors (L ≳ 108L⊙) within 10 kpc, and likely several hundred progenitors in total. We also test our method on simulations of MW-mass haloes, and find that our method is able to recover the true accreted population within a factor of 2. Future datamore »sets will provide MDFs with orders of magnitude more stars, and this method could be a powerful technique to quantify the accreted populations down to the ultra-faint dwarf mass scale for both the MW and its satellites.

    « less
  2. ABSTRACT We present the results of fitting a flexible stellar stream density model to a collection of thirteen streams around the Milky Way, using photometric data from DES, DECaLS, and Pan-STARRS. We construct density maps for each stream and characterize their tracks on the sky, width, and distance modulus curves along the length of each stream. We use these measurements to compute lengths and total luminosities of streams and identify substructures. Several streams show prominent substructures, such as stream broadening, gaps, large deviations of stream tracks, and sharp changes in stream densities. Examining the group of streams as a population, as expected we find that streams with globular cluster progenitors are typically narrower than those with dwarf galaxy progenitors, with streams around 100 pc wide showing overlap between the two populations. We also note the average luminosity of globular cluster streams is significantly lower than the typical luminosity of intact globular clusters. The likely explanation is that observed globular cluster streams preferentially come from lower luminosity and lower density clusters. The stream measurements done in a uniform manner presented here will be helpful for more detailed stream studies such as identifying candidate stream members for spectroscopic follow up and stellar streammore »dynamical modelling.« less
    Free, publicly-accessible full text available June 14, 2023
  3. Abstract

    We use a geometric method to derive (two-dimensional) separation functions among pairs of objects within populations of specified position functiondN/dR. We present analytic solutions for separation functions corresponding to a uniform surface density within a circular field, a Plummer sphere (viewed in projection), and the mixture thereof—including contributions from binary objects within both subpopulations. These results enable inferences about binary object populations via direct modeling of object position and pair separation data, without resorting to standard estimators of the two-point correlation function. Analyzing mock data sets designed to mimic known dwarf spheroidal galaxies, we demonstrate the ability to recover input properties including the number of wide binary star systems and, in cases where the number of resolved binary pairs is assumed to be ≳a few hundred, characteristic features (e.g., steepening and/or truncation) of their separation function. Combined with forthcoming observational capabilities, this methodology opens a window onto the formation and/or survival of wide binary populations in dwarf galaxies, and offers a novel probe of inferred dark matter substructure on the smallest galactic scales.

  4. ABSTRACT We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $296.0_{-3.3}^{+3.8} \rm ~ d$, semimajor axis $1.12^{+0.41}_{-0.24}\rm ~au$, and systemic velocity $-380.0 \pm 1.7 \rm ~km ~s^{-1}$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$.
    Free, publicly-accessible full text available June 14, 2023
  5. ABSTRACT

    We present an RR Lyrae (RRL) catalogue based on the combination of the third data release of the Zwicky Transient Facility (ZTF DR3) and Gaia EDR3. We use a multistep classification pipeline relying on the Fourier decomposition fitting to the multiband ZTF light curves and random forest classification. The resulting catalogue contains 71 755 RRLs with period and light-curve parameter measurements and has a completeness of 0.92 and a purity of 0.92 with respect to the Specific Objects Study Gaia DR2 RRLs. The catalogue covers the Northern sky with declination ≥−28°, its completeness is ≳0.8 for heliocentric distance ≤80 kpc, and the most distant RRL is at 132 kpc. Compared with several other RRL catalogues covering the Northern sky, our catalogue has more RRLs around the Galactic halo and is more complete at low-Galactic latitude areas. Analysing the spatial distribution of RRL in the catalogue reveals the previously known major overdensities of the Galactic halo, such as the Virgo overdensity and the Hercules–Aquila Cloud, with some evidence of an association between the two. We also analyse the Oosterhoff fraction differences throughout the halo, comparing it with the density distribution, finding increasing Oosterhoff I fraction at the elliptical radii between 16 and 32 kpcmore »and some evidence of different Oosterhoff fractions across various halo substructures.

    « less
  6. Abstract The Fornax dwarf spheroidal galaxy has an anomalous number of globular clusters, five, for its stellar mass. There is a longstanding debate about a potential sixth globular cluster (Fornax 6) that has recently been “rediscovered” in DECam imaging. We present new Magellan/M2FS spectroscopy of the Fornax 6 cluster and Fornax dSph. Combined with literature data we identify ∼15–17 members of the Fornax 6 cluster, showing that this overdensity is indeed a star cluster and associated with the Fornax dSph. The cluster is significantly more metal-rich (mean metallicity of [ Fe / H ] ¯ = −0.71 ± 0.05) than the other five Fornax globular clusters (−2.5 < [Fe/H] < −1.4) and more metal-rich than the bulk of Fornax. We measure a velocity dispersion of 5.6 − 1.6 + 2.0 km s − 1 corresponding to an anomalously high mass-to-light of 15 < M / L < 258 at 90% confidence when calculated assuming equilibrium. Two stars inflate this dispersion and may be either Fornax field stars or as yet unresolved binary stars. Alternatively, the Fornax 6 cluster may be undergoing tidal disruption. Based on its metal-rich nature, the Fornax 6 cluster is likely younger than the other Fornax clusters,more »with an estimated age of ∼2 Gyr when compared to stellar isochrones. The chemodynamics and star formation history of Fornax shows imprints of major events such as infall into the Milky Way, multiple pericenter passages, star formation bursts, and/or potential mergers or interactions. Any of these events may have triggered the formation of the Fornax 6 cluster.« less
  7. ABSTRACT

    J01020100−7122208 is a star whose origin and nature still challenges us. It was first believed to be a yellow supergiant ejected from the Small Magellanic Cloud, but it was more recently claimed to be a red giant accelerated by the Milky Way’s central black hole. In order to unveil its nature, we analysed photometric, astrometric, and high-resolution spectroscopic observations to estimate the orbit, age, and 16 elemental abundances. Our results show that this star has a retrograde and highly-eccentric orbit, $e=0.914_{-0.020}^{+0.016}$. Correspondingly, it likely crossed the Galactic disc at 550 pc from the Galactic Centre. We obtained a spectroscopic mass and age of $1.09\pm 0.10\, {\rm M}_\odot$ and 4.51 ± 1.44 Gyr, respectively. Its chemical composition is similar to the abundance of other retrograde halo stars. We found that the star is enriched in europium, having [Eu/Fe] = 0.93 ± 0.24, and is more metal-poor than reported in the literature, with [Fe/H]  = −1.30 ± 0.10. This information was used to conclude that J01020100−7122208 is likely not a star ejected from the central black of the Milky Way or from the Small Magellanic Cloud. Instead, we propose that it is simply a halo star that was likely accreted by the Milky Way in the distant past, but itsmore »mass and age suggest it is probably an evolved blue straggler.

    « less
  8. ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated with the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SNmore »< 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.« less