Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we construct new t-server Private Information Retrieval (PIR) schemes with communication complexity subpolynomial in the previously best known, for all but finitely many t. Our results are based on combining derivatives (in the spirit of Woodruff-Yekhanin) with the Matching Vector based PIRs of Yekhanin and Efremenko. Previously such a combination was achieved in an ingenious way by Dvir and Gopi, using polynomials and derivatives over certain exotic rings, en route to their fundamental result giving the first 2-server PIR with subpolynomial communication. Our improved PIRs are based on two ingredients: - We develop a new and direct approach to combine derivatives with Matching Vector based PIRs. This approach is much simpler than that of Dvir-Gopi: it works over the same field as the original PIRs, and only uses elementary properties of polynomials and derivatives. - A key subproblem that arises in the above approach is a higher-order polynomial interpolation problem. We show how "sparse S-decoding polynomials", a powerful tool from the original constructions of Matching Vector PIRs, can be used to solve this higher-order polynomial interpolation problem using surprisingly few higer-order evaluations. Using the known sparse S-decoding polynomials, in combination with our ideas leads to our improved PIRs. Notably, we get a 3-server PIR scheme with communication 2O∼((logn)1/3), improving upon the previously best known communication of 2O∼(logn√) due to Efremenko.more » « lessFree, publicly-accessible full text available November 18, 2025
-
Santhanam, Rahul (Ed.)For an odd prime p, we say f(X) ∈ F_p[X] computes square roots in F_p if, for all nonzero perfect squares a ∈ F_p, we have f(a)² = a. When p ≡ 3 mod 4, it is well known that f(X) = X^{(p+1)/4} computes square roots. This degree is surprisingly low (and in fact lowest possible), since we have specified (p-1)/2 evaluations (up to sign) of the polynomial f(X). On the other hand, for p ≡ 1 mod 4 there was previously no nontrivial bound known on the lowest degree of a polynomial computing square roots in F_p. We show that for all p ≡ 1 mod 4, the degree of a polynomial computing square roots has degree at least p/3. Our main new ingredient is a general lemma which may be of independent interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also yields a robust version: any polynomial that computes square roots for 99% of the squares also has degree almost p/3. In the other direction, Agou, Deliglése, and Nicolas [Agou et al., 2003] showed that for infinitely many p ≡ 1 mod 4, the degree of a polynomial computing square roots can be as small as 3p/8.more » « less
-
A collection of sets displays aproximity gapwith respect to some property if for every set in the collection, either (i) all members areδ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members areδ-close to the property. In particular, no set in the collection has roughly half of its membersδ-close to the property and the othersδ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed–Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to anyδsmaller than the Johnson/Guruswami–Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least)linearsize in the RS code dimension, forδsmaller than the unique decoding radius. Concretely, ifδis smaller than half the minimal distance of an RS code\(V\subset {\mathbb {F}}_q^n \), every affine space is either entirelyδ-close to the code, or alternatively at most an (n/q)-fraction of it isδ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed–Solomon codes (due to Berlekamp–Welch and Guruswami–Sudan) on aformal elementof an affine space. This involves working with Reed–Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.more » « less
-
null (Ed.)A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are δ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are δ-close to the property. In particular, no set in the collection has roughly half of its members δ-close to the property and the others δ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed-Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to any δ smaller than the Johnson/Guruswami-Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least) linear size in the RS code dimension, for δ smaller than the unique decoding radius. Concretely, if δ is smaller than half the minimal distance of an RS code V ⊂ Fq n , every affine space is either entirely δ-close to the code, or alternatively at most an ( n/q)-fraction of it is δ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed-Solomon codes (due to Berlekamp-Welch and Guruswami-Sudan) on a formal element of an affine space. This involves working with Reed-Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.more » « less
-
Byrka, Jaroslaw; Meka, Raghu (Ed.)In this work, we prove new relations between the bias of multilinear forms, the correlation between multilinear forms and lower degree polynomials, and the rank of tensors over F₂. We show the following results for multilinear forms and tensors. Correlation bounds. We show that a random d-linear form has exponentially low correlation with low-degree polynomials. More precisely, for d = 2^{o(k)}, we show that a random d-linear form f(X₁,X₂, … , X_d) : (F₂^{k}) ^d → F₂ has correlation 2^{-k(1-o(1))} with any polynomial of degree at most d/2 with high probability. This result is proved by giving near-optimal bounds on the bias of a random d-linear form, which is in turn proved by giving near-optimal bounds on the probability that a sum of t random d-dimensional rank-1 tensors is identically zero. Tensor rank vs Bias. We show that if a 3-dimensional tensor has small rank then its bias, when viewed as a 3-linear form, is large. More precisely, given any 3-dimensional tensor T: [k]³ → F₂ of rank at most t, the bias of the 3-linear form f_T(X₁, X₂, X₃) : = ∑_{(i₁, i₂, i₃) ∈ [k]³} T(i₁, i₂, i₃)⋅ X_{1,i₁}⋅ X_{2,i₂}⋅ X_{3,i₃} is at least (3/4)^t. This bias vs tensor-rank connection suggests a natural approach to proving nontrivial tensor-rank lower bounds. In particular, we use this approach to give a new proof that the finite field multiplication tensor has tensor rank at least 3.52 k, which is the best known rank lower bound for any explicit tensor in three dimensions over F₂. Moreover, this relation between bias and tensor rank holds for d-dimensional tensors for any fixed d.more » « less