skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Koric, Seid"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NA (Ed.)
    Critical Resolved Shear Stress (CRSS) determination is the focus of this paper. 
    more » « less
  2. Numerical modeling framework tracks volcanic activity and forecasts the 2018 eruption of Sierra Negra Volcano, Galapagos. 
    more » « less
  3. Abstract Significant investments to upgrade and construct large-scale scientific facilities demand commensurate investments in R&D to design algorithms and computing approaches to enable scientific and engineering breakthroughs in the big data era. Innovative Artificial Intelligence (AI) applications have powered transformational solutions for big data challenges in industry and technology that now drive a multi-billion dollar industry, and which play an ever increasing role shaping human social patterns. As AI continues to evolve into a computing paradigm endowed with statistical and mathematical rigor, it has become apparent that single-GPU solutions for training, validation, and testing are no longer sufficient for computational grand challenges brought about by scientific facilities that produce data at a rate and volume that outstrip the computing capabilities of available cyberinfrastructure platforms. This realization has been driving the confluence of AI and high performance computing (HPC) to reduce time-to-insight, and to enable a systematic study of domain-inspired AI architectures and optimization schemes to enable data-driven discovery. In this article we present a summary of recent developments in this field, and describe specific advances that authors in this article are spearheading to accelerate and streamline the use of HPC platforms to design and apply accelerated AI algorithms in academia and industry. 
    more » « less
  4. Abstract This article introduces a computational design framework for obtaining three‐dimensional (3D) periodic elastoplastic architected materials with enhanced performance, subject to uniaxial or shear strain. A nonlinear finite element model accounting for plastic deformation is developed, where a Lagrange multiplier approach is utilized to impose periodicity constraints. The analysis assumes that the material obeys a von Mises plasticity model with linear isotropic hardening. The finite element model is combined with a corresponding path‐dependent adjoint sensitivity formulation, which is derived analytically. The optimization problem is parametrized using the solid isotropic material penalization method. Designs are optimized for either end compliance or toughness for a given prescribed displacement. Such a framework results in producing materials with enhanced performance through much better utilization of an elastoplastic material. Several 3D examples are used to demonstrate the effectiveness of the mathematical framework. 
    more » « less