- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Korman, Matias (3)
-
Akitaya, Hugo A. (2)
-
Korten, Oliver (2)
-
Souvaine, Diane L. (2)
-
A_Akitaya, Hugo (1)
-
Abel, Zachary (1)
-
Kominers, Scott Duke (1)
-
Stock, Frederick (1)
-
Toth, Csaba D. (1)
-
Tóth, Csaba D. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
Mulzer, Wolfgang (1)
-
Phillips, Jeff M (1)
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mulzer, Wolfgang; Phillips, Jeff M (Ed.)In the modular robot reconfiguration problem, we are given n cube-shaped modules (or robots) as well as two configurations, i.e., placements of the n modules so that their union is face-connected. The goal is to find a sequence of moves that reconfigures the modules from one configuration to the other using "sliding moves," in which a module slides over the face or edge of a neighboring module, maintaining connectivity of the configuration at all times. For many years it has been known that certain module configurations in this model require at least Ω(n²) moves to reconfigure between them. In this paper, we introduce the first universal reconfiguration algorithm - i.e., we show that any n-module configuration can reconfigure itself into any specified n-module configuration using just sliding moves. Our algorithm achieves reconfiguration in O(n²) moves, making it asymptotically tight. We also present a variation that reconfigures in-place, it ensures that throughout the reconfiguration process, all modules, except for one, will be contained in the union of the bounding boxes of the start and end configuration.more » « less
-
Akitaya, Hugo A.; Korman, Matias; Korten, Oliver; Souvaine, Diane L.; Tóth, Csaba D. (, Theoretical Computer Science)
-
Akitaya, Hugo A.; Korman, Matias; Korten, Oliver; Souvaine, Diane L.; Toth, Csaba D. (, Algorithms and Complexity (CIAC 2021))null (Ed.)Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph G. A partition of V(G) is connected if every part induces a connected subgraph. In many applications, it is desirable to obtain parts of roughly the same size, possibly with some slack s. A Balanced Connected k-Partition with slack s, denoted (k, s)-BCP, is a partition of V(G) into k nonempty subsets, of sizes n1,…,nk with |ni−n/k|≤s , each of which induces a connected subgraph (when s=0 , the k parts are perfectly balanced, and we call it k-BCP for short). A recombination is an operation that takes a (k, s)-BCP of a graph G and produces another by merging two adjacent subgraphs and repartitioning them. Given two k-BCPs, A and B, of G and a slack s≥0 , we wish to determine whether there exists a sequence of recombinations that transform A into B via (k, s)-BCPs. We obtain four results related to this problem: (1) When s is unbounded, the transformation is always possible using at most 6(k−1) recombinations. (2) If G is Hamiltonian, the transformation is possible using O(kn) recombinations for any s≥n/k , and (3) we provide negative instances for s≤n/(3k) . (4) We show that the problem is PSPACE-complete when k∈O(nε) and s∈O(n1−ε) , for any constant 0<ε≤1 , even for restricted settings such as when G is an edge-maximal planar graph or when k≥3 and G is planar.more » « less
An official website of the United States government
