skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Korobkin, Dmitry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Higher‐order topological insulators (HOTIs) represent a new type of topological system, supporting boundary states localized over boundaries, two or more dimensions lower than the dimensionality of the system itself. Interestingly, photonic HOTIs can possess a richer physics than their original condensed matter counterpart, supporting conventional HOTI states based on tight‐binding coupling, and a new type of topological HOTI states enabled by long‐range interactions. Here, a new mechanism to establish all‐dielectric infrared HOTI metasurfaces exhibiting both types of HOTI states is proposed, supported by a topological transition accompanied by the emergence of topological Wannier‐type polarization. Two kinds of near‐field experimental studies are performed: i) the solid immersion spectroscopy and ii) near‐field imaging using scattering scanning near‐field optical microscopy to directly observe the topological transition and the emergence of HOTI states of two types. It is shown that the near‐field profiles indicate the displacement of the Wannier center across the topological transition leading to the topological dipole polarization and emergence of the topological boundary states. The proposed all‐dielectric HOTI metasurface offers a new approach to confine the optical field in micro‐ and nano‐scale topological cavities and thus paves the way to achieve a novel nanophotonic technology. 
    more » « less