skip to main content

Search for: All records

Creators/Authors contains: "Kortman, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed tomore »meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.« less
    Free, publicly-accessible full text available December 1, 2023
  2. Free, publicly-accessible full text available May 1, 2023
  3. Free, publicly-accessible full text available May 1, 2023
  4. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10more »situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by $${\sim }2\%$$ ∼ 2 % across a large part of the $$p_{\text {T}}$$ p T spectrum in the central region and underestimated by $${\sim }4\%$$ ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are $${\lesssim }1\%$$ ≲ 1 % for $$15« less
    Free, publicly-accessible full text available March 1, 2023
  5. A bstract Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass 125 GeV decays into four leptons ( ℓ = e , μ ). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: H → XX/ZX → 4 ℓ , where the new boson X has a mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb − 1 at a centre-of-mass energy $$ \sqrt{s} $$ smore »= 13 TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into XX/ZX , improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where X is interpreted to be a dark boson.« less
    Free, publicly-accessible full text available March 1, 2023
  6. Abstract This paper presents a measurement of the electroweak production of two jets in association with a $$Z\gamma $$ Z γ pair, with the Z boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125  $$\text {GeV}$$ GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton–proton collisions at $$\sqrt{s}$$ s = 13  $$\text {TeV}$$ TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . Themore »event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $$Z\gamma $$ Z γ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is $$1.31\pm 0.29$$ 1.31 ± 0.29  fb. An observed (expected) upper limit of 0.37 ( $$0.34^{+0.15}_{-0.10}$$ 0 . 34 - 0.10 + 0.15 ) at 95% confidence level is set on the branching ratio of a 125  $$\text {GeV}$$ GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ( $$0.017^{+0.007}_{-0.005}$$ 0 . 017 - 0.005 + 0.007 ), assuming the Standard Model production cross-section for a 125  $$\text {GeV}$$ GeV Higgs boson.« less
    Free, publicly-accessible full text available February 1, 2023
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available January 1, 2023
  9. A bstract A search for the exotic decay of the Higgs boson ( H ) into a b $$ \overline{b} $$ b ¯ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb − 1 of pp collisions at $$ \sqrt{s} $$ s = 13 TeV. The search targets events from ZH production in an NMSSM scenario where H → $$ {\overset{\sim }{\chi}}_2^0{\overset{\sim }{\chi}}_1^0 $$ χ ~ 2 0 χ ~ 1 0 , with $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 → $$ a{\overset{\sim }{\chi}}_1^0more »$$ a χ ~ 1 0 , where a is a light pseudoscalar Higgs boson and $$ {\overset{\sim }{\chi}}_{1,2}^0 $$ χ ~ 1 , 2 0 are the two lightest neutralinos. The decay of the a boson into a pair of b -quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a b -quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $$ {\overset{\sim }{\chi}}_2^0 $$ χ ~ 2 0 , $$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 and a boson.« less
    Free, publicly-accessible full text available January 1, 2023
  10. Free, publicly-accessible full text available December 1, 2022