- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Kang, Mingon (2)
-
Aqila, Tasmia (1)
-
Han, So-Ra (1)
-
Koh, Hyun Min (1)
-
Kosaraju, Sai (1)
-
Kosaraju, Sai Chandra (1)
-
Lee, Hyun (1)
-
Lee, JeungMin (1)
-
Lee, Jun Hyuck (1)
-
Masum, Mohammad (1)
-
Mondal, Ananda M. (1)
-
Oh, Tae-Jin (1)
-
Park, Mingyu (1)
-
Song, Dae Hyun (1)
-
Tsaku, Nelson Zange (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The rapid growth of uncharacterized enzymes and their functional diversity urge accurate and trustworthy computational functional annotation tools. However, current state-of-the-art models lack trustworthiness on the prediction of the multilabel classification problem with thousands of classes. Here, we demonstrate that a novel evidential deep learning model (named ECPICK) makes trustworthy predictions of enzyme commission (EC) numbers with data-driven domain-relevant evidence, which results in significantly enhanced predictive power and the capability to discover potential new motif sites. ECPICK learns complex sequential patterns of amino acids and their hierarchical structures from 20 million enzyme data. ECPICK identifies significant amino acids that contribute to the prediction without multiple sequence alignment. Our intensive assessment showed not only outstanding enhancement of predictive performance on the largest databases of Uniprot, Protein Data Bank (PDB) and Kyoto Encyclopedia of Genes and Genomes (KEGG), but also a capability to discover new motif sites in microorganisms. ECPICK is a reliable EC number prediction tool to identify protein functions of an increasing number of uncharacterized enzymes.more » « less
-
Tsaku, Nelson Zange; Kosaraju, Sai Chandra; Aqila, Tasmia; Masum, Mohammad; Song, Dae Hyun; Mondal, Ananda M.; Koh, Hyun Min; Kang, Mingon (, 2019 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM))Automatic histopathological Whole Slide Image (WSI) analysis for cancer classification has been highlighted along with the advancements in microscopic imaging techniques, since manual examination and diagnosis with WSIs are time- and cost-consuming. Recently, deep convolutional neural networks have succeeded in histopathological image analysis. However, despite the success of the development, there are still opportunities for further enhancements. In this paper, we propose a novel cancer texture-based deep neural network (CAT-Net) that learns scalable morphological features from histopathological WSIs. The innovation of CAT-Net is twofold: (1) capturing invariant spatial patterns by dilated convolutional layers and (2) improving predictive performance while reducing model complexity. Moreover, CAT-Net can provide discriminative morphological (texture) patterns formed on cancerous regions of histopathological images comparing to normal regions. We elucidated how our proposed method, CAT-Net, captures morphological patterns of interest in hierarchical levels in the model. The proposed method out-performed the current state-of-the-art benchmark methods on accuracy, precision, recall, and F1 score.more » « less
An official website of the United States government
