Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Germanium sulfide (GeS) is a 2D semiconductor with potential for high-speed optoelectronics and photovoltaics due to its near-infrared band gap and high mobility of optically excited charge carriers. Here, we use time-resolved THz spectroscopy to investigate the differences in ultrafast carrier dynamics in GeS following near-band gap photoexcitation (1.55 eV), which penetrates deep into the multilayer GeS, and excitation with above-band gap photon energy (3.1 eV), which is absorbed within a sub-20 nm surface layer. We find that the photoexcited carriers in the bulk have significantly longer lifetimes and higher mobility, as they are less impacted by trap states that affect carrier behavior in the surface layer. These insights are important for designing GeS-based photodetectors, solar energy conversion devices, and sensors that leverage the sensitivity of surface-layer photoexcited carriers to trap states.more » « lessFree, publicly-accessible full text available March 26, 2026
-
Germanium sulfide (GeS) and germanium selenide (GeSe) are layered 2D van der Waals materials that belong to a family of group-IV monochalcogenides. These semiconductors have high carrier mobilities and moderate band gaps in the near infrared. Additionally, we have demonstrated that above gap photoexcitation results in ultrafast surface photocurrents and emission of THz pulses due to a spontaneous ferroelectric polarization that breaks inversion symmetry in the monolayer. Beyond the sub-picosecond time scales of shift currents, photoexcited carriers in both materials result in long-lived transient conductivity. We find that 800 nm excitation results in longer lived free photocarriers, persisting for hundreds of picoseconds to several nanoseconds, compared to tens to hundreds of picoseconds lifetimes for 400 nm excitation. Here, we report on tailoring the free photoexcited carrier lifetimes by intercalation of zero-valent Cu into the van der Waals gaps of GeS and GeSe. Density functional theory calculations predict that Cu atoms introduce mid-gap states. We demonstrate that intercalating only ∼3 atomic % of zero-valent Cu reduces the carrier lifetime by as much as two-to-four-fold, raising the prospects of these materials being used for high-speed optoelectronics.more » « less
-
Betz, Markus; Elezzabi, Abdulhakem Y. (Ed.)
An official website of the United States government
