skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Koss, Abigail R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Volatile organic compound (VOC) emissions and subsequent oxidation contribute to the formation of secondary pollutants and poor air quality in general. As more VOCs at lower mixing ratios have become the target of air quality investigations, their quantification has been aided by technological advancements in proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). However, such quantification requires appropriate instrument background measurements and calibrations, particularly for VOCs without calibration standards. This study utilized a Vocus PTR-TOF-MS coupled with a gas chromatograph for real-time and speciated measurements of ambient VOCs in Boulder, Colorado, during spring 2021. The aim of these measurements was to understand and characterize instrument response and temporal variability as to inform the quantification of a broader range of detected VOCs. Fast, frequent calibrations were made every 2 h in addition to daily multipoint calibrations. Sensitivities derived from the fast calibrations were 5 ± 6 % (average and 1 standard deviation) lower than those derived from the multipoint calibrations due to an offset between the calibrations and instrument background measurement. This offset was caused, in part, by incomplete mixing of the standard with diluent. These fast calibrations were used in place of a normalization correction to account for variability in instrument response and accounted for non-constant reactor conditions caused by a gradual obstruction of the sample inlet. One symptom of these non-constant conditions was a trend in fragmentation, although the greatest observed variability was 6 % (1 relative standard deviation) for isoprene. A PTR Data Toolkit (PTR-DT) was developed to assess instrument performance and rapidly estimate the sensitivities of VOCs which could not be directly calibrated on the timescale of the fast calibrations using the measured sensitivities of standards, molecular properties, and simple reaction kinetics. Through this toolkit, the standards' sensitivities were recreated within 1 ± 8 % of the measured values. Three clean-air sources were compared: a hydrocarbon trap, zero-grade air and ultra-high purity nitrogen, and a catalytic zero-air generator. The catalytic zero-air generator yielded the lowest instrument background signals for the majority of ions, followed by the hydrocarbon trap. Depending on the ionization efficiency, product ion fragmentation, ion transmission, and instrument background, standards' limits of detection (5 s measurement integration) derived from the catalytic zero-air generator and the fast calibration sensitivities ranged from 2 ppbv (methanol) to 1 pptv (decamethylcyclopentasiloxane; D5 siloxane) with most standards having detection limits below 20 pptv. Finally, applications of measurements with low detection limits are considered for a few low-signal species including sub-parts-per-trillion by volume (pptv) enhancements of icosanal (and isomers; 1 min average) in a plume of cooking emissions, and sub-parts-per-trillion by volume enhancements in dimethyl disulfide in plumes containing other organosulfur compounds. Additionally, chromatograms of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane (D3, D4, and D5 siloxanes, respectively), combined with high sensitivity, suggest that online measurements can reasonably be associated with the individual isomers. 
    more » « less
  2. Abstract. Oxidation of organic compounds in the atmosphere produces an immenselycomplex mixture of product species, posing a challenge for both theirmeasurement in laboratory studies and their inclusion in air quality andclimate models. Mass spectrometry techniques can measure thousands of thesespecies, giving insight into these chemical processes, but the datasetsthemselves are highly complex. Data reduction techniques that groupcompounds in a chemically and kinetically meaningful way provide a route tosimplify the chemistry of these systems but have not been systematicallyinvestigated. Here we evaluate three approaches to reducing thedimensionality of oxidation systems measured in an environmental chamber:positive matrix factorization (PMF), hierarchical clustering analysis (HCA),and a parameterization to describe kinetics in terms of multigenerationalchemistry (gamma kinetics parameterization, GKP). The evaluation isimplemented by means of two datasets: synthetic data consisting of athree-generation oxidation system with known rate constants, generationnumbers, and chemical pathways; and the measured products of OH-initiatedoxidation of a substituted aromatic compound in a chamber experiment. Wefind that PMF accounts for changes in the average composition of allproducts during specific periods of time but does not sort compounds intogenerations or by another reproducible chemical process. HCA, on the otherhand, can identify major groups of ions and patterns of behavior andmaintains bulk chemical properties like carbon oxidation state that can beuseful for modeling. The continuum of kinetic behavior observed in a typicalchamber experiment can be parameterized by fitting species' time traces tothe GKP, which approximates the chemistry as a linear, first-order kineticsystem. The fitted parameters for each species are the number of reaction stepswith OH needed to produce the species (the generation) and an effectivekinetic rate constant that describes the formation and loss rates of thespecies. The thousands of species detected in a typical laboratory chamberexperiment can be organized into a much smaller number (10–30) of groups,each of which has a characteristic chemical composition and kinetic behavior.This quantitative relationship between chemical and kinetic characteristics,and the significant reduction in the complexity of the system, provides anapproach to understanding broad patterns of behavior in oxidation systemsand could be exploited for mechanism development and atmospheric chemistrymodeling. 
    more » « less
  3. Abstract. Chemical ionization massspectrometry (CIMS) instruments routinely detect hundreds of oxidized organic compoundsin the atmosphere. A major limitation of these instruments is the uncertaintyin their sensitivity to many of the detected ions. We describe thedevelopment of a new high-resolution time-of-flight chemical ionization massspectrometer that operates in one of two ionization modes: using eitherammonium ion ligand-switching reactions such as for NH 4 + CIMS orproton transfer reactions such as for proton-transfer-reaction massspectrometer (PTR-MS). Switching between the modes can be done within 2 min.The NH 4 + CIMS mode of the new instrument has sensitivities of upto 67 000 dcps ppbv−1 (duty-cycle-corrected ion counts per second perpart per billion by volume) and detection limits between 1 and 60 pptv at2σ for a 1 s integration time for numerous oxygenated volatileorganic compounds. We present a mass spectrometric voltage scanning procedurebased on collision-induced dissociation that allows us to determine thestability of ammonium-organic ions detected by the NH 4 + CIMS instrument.Using this procedure, we can effectively constrain the sensitivity of theammonia chemical ionization mass spectrometer to a wide range of detectedoxidized volatile organic compounds for which no calibration standards exist.We demonstrate the application of this procedure by quantifying thecomposition of secondary organic aerosols in a series of laboratoryexperiments. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract. Gas-phase atmospheric concentrations of peroxyacetyl nitrate (PAN),peroxypropionyl nitrate (PPN), and peroxymethacryloyl nitrate (MPAN) weremeasured on the ground using a gas chromatograph electron capture detector(GC-ECD) during the Southern Oxidants and Aerosols Study (SOAS) 2013 campaign(1 June to 15 July 2013) in Centreville, Alabama, in order to studybiosphere–atmosphere interactions. Average levels of PAN, PPN, and MPAN were169, 5, and 9 pptv, respectively, and the sum accounts for an average of16 % of NOy during the daytime (10:00 to 16:00 localtime). Higher concentrations were seen on average in air that came to thesite from the urban NOx sources to the north. PAN levelswere the lowest observed in ground measurements over the past two decades inthe southeastern US. A multiple regression analysis indicates that biogenicvolatile organic compounds (VOCs) account for 66 % of PAN formationduring this study. Comparison of this value with a 0-D model simulation ofperoxyacetyl radical production indicates that at least 50 % of PANformation is due to isoprene oxidation. MPAN has a statistical correlationwith isoprene hydroxynitrates (IN). Organic aerosol mass increases withgas-phase MPAN and IN concentrations, but the mass of organic nitrates inparticles is largely unrelated to MPAN. 
    more » « less
  7. Abstract. Aromatic hydrocarbons make up a large fraction of anthropogenic volatile organic compounds and contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Four toluene and four 1,2,4-trimethylbenzene (1,2,4-TMB) photooxidation experiments were performed in an environmental chamber under relevantpolluted conditions (NOx∼10 ppb). An extensive suite of instrumentation including two proton-transfer-reaction mass spectrometers (PTR-MS) and two chemical ionisation mass spectrometers (NH4+ CIMS and I− CIMS) allowed for quantification of reactive carbon in multiple generations of hydroxyl radical (OH)-initiated oxidation. Oxidation of both species produces ring-retaining products such as cresols, benzaldehydes, and bicyclic intermediate compounds, as well as ring-scission products such as epoxides and dicarbonyls. We show that the oxidation of bicyclic intermediate products leads to the formation of compounds with high oxygen content (an O:C ratio of up to 1.1). These compounds, previously identified as highly oxygenated molecules (HOMs), are produced by more than one pathway with differing numbers of reaction steps with OH, including both auto-oxidation and phenolic pathways. We report the elemental composition of these compounds formed under relevant urban high-NO conditions. We show that ring-retaining products for these two precursors are more diverse and abundant than predicted by current mechanisms. We present the speciated elemental composition of SOA for both precursors and confirm that highly oxygenated products make up a significant fraction of SOA. Ring-scission products are also detected in both the gas and particle phases, and their yields and speciation generally agree with the kinetic model prediction. 
    more » « less
  8. Abstract. Chamber oxidation experiments conducted at the Fire Sciences Laboratory in 2016 are evaluated to identify important chemical processes contributing to the hydroxy radical (OH) chemistry of biomass burning non-methane organic gases (NMOGs). Based on the decay of primary carbon measured by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), it is confirmed that furans and oxygenated aromatics are among the NMOGs emitted from western United States fuel types with the highest reactivities towards OH. The oxidation processes and formation of secondary NMOG masses measured by PTR-ToF-MS and iodide-clustering time-of-flight chemical ionization mass spectrometry (I-CIMS) is interpreted using a box model employing a modified version of the Master Chemical Mechanism (v. 3.3.1) that includes the OH oxidation of furan, 2-methylfuran, 2,5-dimethylfuran, furfural, 5-methylfurfural, and guaiacol. The model supports the assignment of major PTR-ToF-MS and I-CIMS signals to a series of anhydrides and hydroxy furanones formed primarily through furan chemistry. This mechanism is applied to a Lagrangian box model used previously to model a real biomass burning plume. The customized mechanism reproduces the decay of furans and oxygenated aromatics and the formation of secondary NMOGs, such as maleic anhydride. Based on model simulations conducted with and without furans, it is estimated that furans contributed up to 10 % of ozone and over 90 % of maleic anhydride formed within the first 4 h of oxidation. It is shown that maleic anhydride is present in a biomass burning plume transported over several days, which demonstrates the utility of anhydrides as markers for aged biomass burning plumes. 
    more » « less