skip to main content


Search for: All records

Creators/Authors contains: "Koukoula, Marika"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Water resources reanalysis (WRR) can be used as a numerical tool to advance our understanding of hydrological processes where in situ observations are limited. However, WRR products are associated with uncertainty that needs to be quantified to improve usability of such products in water resources applications. In this study, we evaluate estimates of water cycle components from 18 state-of-the-art WRR datasets derived from different land surface/hydrological models, meteorological forcing, and precipitation datasets. The evaluation was conducted at three spatial scales in the upper Blue Nile basin in Ethiopia. Precipitation, streamflow, evapotranspiration (ET), and terrestrial water storage (TWS) were evaluated against in situ daily precipitation and streamflow measurements, remote sensing–derived ET, and the NASA Gravity Recovery and Climate Experiment (GRACE) product, respectively. Our results highlight the current strengths and limitations of the available WRR datasets in analyzing the hydrological cycle and dynamics of the study basins, showing an overall underestimation of ET and TWS and overestimation of streamflow. While calibration improves streamflow simulation, it results in a relatively poorer performance in terms of ET. In addition, we show that the differences in the schemes used in the various land surface models resulted in significant differences in the estimation of the water cycle components from the respective WRR products, while we noted small differences among the products related to precipitation forcing. We did not identify a single product that consistently outperformed others; however, we found that there are specific WRR products that provided accurate representation of a single component of the water cycle (e.g., only runoff) in the area.

     
    more » « less