skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kovacevich, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The recent IceCube detection of TeV neutrino emission from the nearby active galaxy NGC 1068 suggests that active galactic nuclei (AGNs) could make a sizable contribution to the diffuse flux of astrophysical neutrinos. The absence of TeVγ-rays from NGC 1068 indicates neutrino production in the vicinity of the supermassive black hole, where the high radiation density leads toγ-ray attenuation. Therefore, any potential neutrino emission from similar sources is not expected to correlate with high-energyγ-rays. Disk-corona models predict neutrino emission from Seyfert galaxies to correlate with keV X-rays because they are tracers of coronal activity. Using through-going track events from the Northern Sky recorded by IceCube between 2011 and 2021, we report results from a search for individual and aggregated neutrino signals from 27 additional Seyfert galaxies that are contained in the Swift's Burst Alert Telescope AGN Spectroscopic Survey. Besides the generic single power law, we evaluate the spectra predicted by the disk-corona model assuming stochastic acceleration parameters that match the measured flux from NGC 1068. Assuming all sources to be intrinsically similar to NGC 1068, our findings constrain the collective neutrino emission from X-ray bright Seyfert galaxies in the northern sky, but, at the same time, show excesses of neutrinos that could be associated with the objects NGC 4151 and CGCG 420-015. These excesses result in a 2.7σsignificance with respect to background expectations. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  3. Free, publicly-accessible full text available March 7, 2026
  4. We provide supporting details for the search for a 3 + 1 sterile neutrino using data collected over 10.7 years at the IceCube Neutrino Observatory. The analysis uses atmospheric muon-flavored neutrinos from 0.5 to 100 TeV that traverse Earth to reach the IceCube detector and finds a best-fit point at sin 2 ( 2 θ 24 ) = 0.16 and Δ m 41 2 = 3.5 eV 2 with a goodness-of-fit p value of 12% and consistency with the null hypothesis of no oscillations to sterile neutrinos with a p value of 3.1%. Several improvements were made over past analyses, which are reviewed in this article, including upgrades to the reconstruction and the study of sources of systematic uncertainty. We provide details of the fit quality and discuss stability tests that split the data for separate samples, comparing results. We find that the fits are consistent between split datasets. Published by the American Physical Society2024 
    more » « less
  5. This Letter presents the result of a 3 + 1 sterile neutrino search using 10.7 yr of IceCube data. We analyze atmospheric muon neutrinos that traverse the Earth with energies ranging from 0.5 to 100 TeV, incorporating significant improvements in modeling neutrino flux and detector response compared to earlier studies. Notably, for the first time, we categorize data into starting and throughgoing events, distinguishing neutrino interactions with vertices inside or outside the instrumented volume, to improve energy resolution. The best-fit point for a 3 + 1 model is found to be at sin 2 ( 2 θ 24 ) = 0.16 and Δ m 41 2 = 3.5 eV 2 , which agrees with previous iterations of this Letter. The result is consistent with the null hypothesis of no sterile neutrinos with a p value of 3.1%. Published by the American Physical Society2024 
    more » « less
  6. We present a search for an eV-scale sterile neutrino using 7.5 years of data from the IceCube DeepCore detector. The analysis uses a sample of 21,914 events with energies between 5 and 150 GeV to search for sterile neutrinos through atmospheric muon neutrino disappearance. Improvements in event selection and treatment of systematic uncertainties provide greater statistical power compared to previous DeepCore sterile neutrino searches. Our results are compatible with the absence of mixing between active and sterile neutrino states, and we place constraints on the mixing matrix elements | U μ 4 | 2 < 0.0534 and | U τ 4 | 2 < 0.0574 at 90% CL under the assumption that Δ m 41 2 1 eV 2 . These null results add to the growing tension between anomalous appearance results and constraints from disappearance searches in the 3 + 1 sterile neutrino landscape. Published by the American Physical Society2024 
    more » « less
  7. Abstract The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources. 
    more » « less
  8. Abstract Name that Neutrinois a citizen science project where volunteers aid in classification of events for the IceCube Neutrino Observatory, an immense particle detector at the geographic South Pole. From March 2023 to September 2023, volunteers did classifications of videos produced from simulated data of both neutrino signal and background interactions.Name that Neutrinoobtained more than 128,000 classifications by over 1800 registered volunteers that were compared to results obtained by a deep neural network machine-learning algorithm. Possible improvements for bothName that Neutrinoand the deep neural network are discussed. 
    more » « less