skip to main content

Search for: All records

Creators/Authors contains: "Koven, Charles D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate representation of permafrost carbon emissions is crucial for climate projections, yet current Earth system models inadequately represent permafrost carbon. Sustained funding opportunities are needed from government and private sectors for prioritized model development. 
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Soil organic matter decomposition and its interactions with climate depend on whether the organic matter is associated with soil minerals. However, data limitations have hindered global-scale analyses of mineral-associated and particulate soil organic carbon pools and their benchmarking in Earth system models used to estimate carbon cycle–climate feedbacks. Here we analyse observationally derived global estimates of soil carbon pools to quantify their relative proportions and compute their climatological temperature sensitivities as the decline in carbon with increasing temperature. We find that the climatological temperature sensitivity of particulate carbon is on average 28% higher than that of mineral-associated carbon, and up to 53% higher in cool climates. Moreover, the distribution of carbon between these underlying soil carbon pools drives the emergent climatological temperature sensitivity of bulk soil carbon stocks. However, global models vary widely in their predictions of soil carbon pool distributions. We show that the global proportion of model pools that are conceptually similar to mineral-protected carbon ranges from 16 to 85% across Earth system models from the Coupled Model Intercomparison Project Phase 6 and offline land models, with implications for bulk soil carbon ages and ecosystem responsiveness. To improve projections of carbon cycle–climate feedbacks, it is imperative to assess underlying soil carbon pools to accurately predict the distribution and vulnerability of soil carbon.

    more » « less
  3. Key Points A new semi‐analytical spin‐up (SASU) framework combines the default accelerated spin‐up method and matrix analytical algorithm SASU accelerates CLIM5 spin‐up by tens of times, becoming the fastest method to our knowledge SASU is applicable to most biogeochemical models and enables computationally costly study, for example, sensitivity analysis 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Abstract

    Global estimates of the land carbon sink are often based on simulations by terrestrial biosphere models (TBMs). The use of a large number of models that differ in their underlying hypotheses, structure and parameters is one way to assess the uncertainty in the historical land carbon sink. Here we show that the atmospheric forcing datasets used to drive these TBMs represent a significant source of uncertainty that is currently not systematically accounted for in land carbon cycle evaluations. We present results from three TBMs each forced with three different historical atmospheric forcing reconstructions over the period 1850–2015. We perform an analysis of variance to quantify the relative uncertainty in carbon fluxes arising from the models themselves, atmospheric forcing, and model-forcing interactions. We find that atmospheric forcing in this set of simulations plays a dominant role on uncertainties in global gross primary productivity (GPP) (75% of variability) and autotrophic respiration (90%), and a significant but reduced role on net primary productivity and heterotrophic respiration (30%). Atmospheric forcing is the dominant driver (52%) of variability for the net ecosystem exchange flux, defined as the difference between GPP and respiration (both autotrophic and heterotrophic respiration). In contrast, for wildfire-driven carbon emissions model uncertainties dominate and, as a result, model uncertainties dominate for net ecosystem productivity. At regional scales, the contribution of atmospheric forcing to uncertainty shows a very heterogeneous pattern and is smaller on average than at the global scale. We find that this difference in the relative importance of forcing uncertainty between global and regional scales is related to large differences in regional model flux estimates, which partially offset each other when integrated globally, while the flux differences driven by forcing are mainly consistent across the world and therefore add up to a larger fractional contribution to global uncertainty.

    more » « less
  5. Abstract Arctic warming is affecting snow cover and soil hydrology, with consequences for carbon sequestration in tundra ecosystems. The scarcity of observations in the Arctic has limited our understanding of the impact of covarying environmental drivers on the carbon balance of tundra ecosystems. In this study, we address some of these uncertainties through a novel record of 119 site-years of summer data from eddy covariance towers representing dominant tundra vegetation types located on continuous permafrost in the Arctic. Here we found that earlier snowmelt was associated with more tundra net CO 2 sequestration and higher gross primary productivity (GPP) only in June and July, but with lower net carbon sequestration and lower GPP in August. Although higher evapotranspiration (ET) can result in soil drying with the progression of the summer, we did not find significantly lower soil moisture with earlier snowmelt, nor evidence that water stress affected GPP in the late growing season. Our results suggest that the expected increased CO 2 sequestration arising from Arctic warming and the associated increase in growing season length may not materialize if tundra ecosystems are not able to continue sequestering CO 2 later in the season. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014 − 175 + 194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate. 
    more » « less
  8. Abstract

    Enhanced ecosystem carbon storage is a key component of many climate mitigation pathways. The State of California has set an ambitious goal of carbon neutrality by 2045, relying in part on enhanced carbon sequestration in natural and working lands. We used statistical modeling, including random forest and climate analog approaches, to explore the climate‐driven challenges and uncertainties associated with the goal of long‐term carbon sequestration in forests and shrublands. We found that seasonal patterns of temperature and precipitation are strong controllers of the spatial distribution of aboveground live carbon. RCP8.5 projections of temperature and precipitation are estimated to drive decreases of 16.1% ± 7.5% in aboveground live carbon by the end of the century, with coastal areas of central and northern California and low/mid‐elevation mountain areas being most vulnerable. With RCP4.5 projections, declines are less severe, with 8.8% ± 5.3% carbon loss. In either scenario, increases in temperature systematically cause biomass declines, and the spread of projected precipitation across 32 CMIP5 models contributes to substantial uncertainty in the magnitude of that decline. Projected changes in the environmental niche for the 20 most biomass‐dominant tree species revealed widespread replacement of conifers by oak species in low elevation regions of central and northern California, with a corresponding decline in carbon storage depending on expected migration rates. The spatial patterns of vulnerability we identify may allow policymakers to assess where carbon sequestration in aboveground biomass is an appropriate part of a climate mitigation portfolio, and where future climate‐driven carbon losses may be a liability.

    more » « less