Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. With a rapidly rising number of transients detected in astronomy, classification methods based on machine learning are increasingly being employed. Their goals are typically to obtain a definitive classification of transients, and for good performance they usually require the presence of a large set of observations. However, well-designed, targeted models can reach their classification goals with fewer computing resources. Aims. The aim of this study is to assist in the observational astronomy task of deciding whether a newly detected transient warrants follow-up observations. Methods. This paper presents SNGuess, a model designed to find young extragalactic nearby transients with high purity. SNGuess works with a set of features that can be efficiently calculated from astronomical alert data. Some of these features are static and associated with the alert metadata, while others must be calculated from the photometric observations contained in the alert. Most of the features are simple enough to be obtained or to be calculated already at the early stages in the lifetime of a transient after its detection. We calculate these features for a set of labeled public alert data obtained over a time span of 15 months from the Zwicky Transient Facility (ZTF). The core model of SNGuess consists of an ensemble of decision trees, which are trained via gradient boosting. Results. Approximately 88% of the candidates suggested by SNGuess from a set of alerts from ZTF spanning from April 2020 to August 2021 were found to be true relevant supernovae (SNe). For alerts with bright detections, this number ranges between 92% and 98%. Since April 2020, transients identified by SNGuess as potential young SNe in the ZTF alert stream are being published to the Transient Name Server (TNS) under the AMPEL_ZTF_NEW group identifier. SNGuess scores for any transient observed by ZTF can be accessed via a web service https://ampel.zeuthen.desy.de/api/live/docs . The source code of SNGuess is publicly available https://github.com/nmiranda/SNGuess . Conclusions. SNGuess is a lightweight, portable, and easily re-trainable model that can effectively suggest transients for follow-up. These properties make it a useful tool for optimizing follow-up observation strategies and for assisting humans in the process of selecting candidate transients.more » « less
-
Abstract Active galactic nuclei (AGNs) can funnel stars and stellar remnants from the vicinity of the galactic center into the inner plane of the AGN disk. Stars reaching this inner region can be tidally disrupted by the stellar-mass black holes in the disk. Such micro tidal disruption events (micro-TDEs) could be a useful probe of stellar interaction with the AGN disk. We find that micro-TDEs in AGNs occur at a rate of ∼170 Gpc −3 yr −1 . Their cleanest observational probe may be the electromagnetic detection of tidal disruption in AGNs by heavy supermassive black holes ( M • ≳ 10 8 M ⊙ ) that cannot tidally disrupt solar-type stars. The reconstructed rate of such events from observations, nonetheless, appears to be much lower than our estimated micro-TDE rate. We discuss two such micro-TDE candidates observed to date (ASASSN-15lh and ZTF19aailpwl).more » « less
-
Abstract We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,
ω XY , the size of the “bump” feature near maximum brightness for arbitrary filtersX andY . We find a significant correlation between the slope of the linear region,β XY , in the CMAGIC diagram andω XY . These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ω XY is computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβ XY can be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities. -
Abstract We construct a physically parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of Type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an autoencoder that is interpreted probabilistically after training using a normalizing flow. We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multistage training setup alongside our physically parameterized network, we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including the automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with previous studies, and show that we can standardize our test sample of SNe Ia with an rms of 0.091 ± 0.010 mag, which corresponds to 0.074 ± 0.010 mag if peculiar velocity contributions are removed. Trained models and codes are released at https://github.com/georgestein/suPAErnova.more » « less
-
Abstract We calibrate spectrophotometric optical spectra of 32 stars commonly used as standard stars, referenced to 14 stars already on the Hubble Space Telescope–based CALSPEC flux system. Observations of CALSPEC and non-CALSPEC stars were obtained with the SuperNova Integral Field Spectrograph over the wavelength range 3300–9400 Å as calibration for the Nearby Supernova Factory cosmology experiment. In total, this analysis used 4289 standard-star spectra taken on photometric nights. As a modern cosmology analysis, all presubmission methodological decisions were made with the flux scale and external comparison results blinded. The large number of spectra per star allows us to treat the wavelength-by-wavelength calibration for all nights simultaneously with a Bayesian hierarchical model, thereby enabling a consistent treatment of the Type Ia supernova cosmology analysis and the calibration on which it critically relies. We determine the typical per-observation repeatability (median 14 mmag for exposures ≳5 s), the Maunakea atmospheric transmission distribution (median dispersion of 7 mmag with uncertainty 1 mmag), and the scatter internal to our CALSPEC reference stars (median of 8 mmag). We also check our standards against literature filter photometry, finding generally good agreement over the full 12 mag range. Overall, the mean of our system is calibrated to the mean of CALSPEC at the level of ∼3 mmag. With our large number of observations, careful cross-checks, and 14 reference stars, our results are the best calibration yet achieved with an integral-field spectrograph, and among the best calibrated surveys.
-
Abstract Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p -value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 10 48 erg for stripped-envelope supernovae, 2.8 × 10 48 erg for type IIP, and 1.3 × 10 49 erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10 3 –10 5 ] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions.more » « lessFree, publicly-accessible full text available May 1, 2024
-
Abstract The D-Egg, an acronym for “Dual optical sensors in an Ellipsoid Glass for Gen2,” is one of the optical modules designed for future extensions of the IceCube experiment at the South Pole. The D-Egg has an elongated-sphere shape to maximize the photon-sensitive effective area while maintaining a narrow diameter to reduce the cost and the time needed for drilling of the deployment holes in the glacial ice for the optical modules at depths up to 2700 m. The D-Egg design is utilized for the IceCube Upgrade, the next stage of the IceCube project also known as IceCube-Gen2 Phase 1, where nearly half of the optical sensors to be deployed are D-Eggs. With two 8-inch high-quantum efficiency photomultiplier tubes (PMTs) per module, D-Eggs offer an increased effective area while retaining the successful design of the IceCube digital optical module (DOM). The convolution of the wavelength-dependent effective area and the Cherenkov emission spectrum provides an effective photodetection sensitivity that is 2.8 times larger than that of IceCube DOMs. The signal of each of the two PMTs is digitized using ultra-low-power 14-bit analog-to-digital converters with a sampling frequency of 240 MSPS, enabling a flexible event triggering, as well as seamless and lossless event recording of single-photon signals to multi-photons exceeding 200 photoelectrons within 10 ns. Mass production of D-Eggs has been completed, with 277 out of the 310 D-Eggs produced to be used in the IceCube Upgrade. In this paper, we report the design of the D-Eggs, as well as the sensitivity and the single to multi-photon detection performance of mass-produced D-Eggs measured in a laboratory using the built-in data acquisition system in each D-Egg optical sensor module.more » « lessFree, publicly-accessible full text available April 1, 2024
-
Abstract This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory’s previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows.more » « lessFree, publicly-accessible full text available April 1, 2024
-
Free, publicly-accessible full text available August 1, 2024