skip to main content

Search for: All records

Creators/Authors contains: "Kowalski, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traditional professional development (PD) seldom provides teachers with the science content knowledge and pedagogical skills necessary to teach in ways called for in current reforms (Wilson, 2013). In a review of the literature, Darling-Hammond et al (2017) specified that quality PD is content-focused, incorporates active learning, supports collaboration, uses models of effective practice, offers feedback and reflection, and is of sustained duration. Few PD programs meet these quality criteria, indeed most PD in the United States uses a short-term approach. The challenges are to (1) provide high quality PD (2) in a flexible, cost-effective format accessible to a wide audiencemore »of teachers. The first challenge is to “design effective professional learning programs based on the best theories of learning and employing the most effective media and technology available (Fishman, 2016, p. 47).” The second challenge may be addressed through online PD. Online PD has emerged as a viable means to provide the necessary accessibility and flexibility for teachers and to reach larger numbers of teachers (Nese et al, 2020). One clear strategy for designing effective online PD is to start from a high-quality in-person PD grounded in research and learning theory. While there are a growing number of online learning opportunities for science teachers, such as MOOCs (Kleiman & Wolf, 2016), access to online resources (Byers & Mendez, 2016), access to science webinars (Stiener et al, 2016), and just-in-time PD related to curriculum initiatives (Levy et al, 2016), these existing opportunities do not meet the criteria for effective PD. Thus, this paper set explores the development of Online Elementary Science PD (OESPD), a pseudonym, to understand how to effectively translate an effective in-person PD for science teachers into an online environment. Each of the three papers explores critical design features for quality online PD drawing on data from an overarching design-based research study that describes the iterative development of OESPD.« less
  2. Free, publicly-accessible full text available April 1, 2023
  3. We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries Bn on 12C and 27Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additional kinematic point to a series of previous measurements of Bn on 12C and provide a first measurement on 27Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average laboratory scattering angle for both targets was 7.7∘, and the average Q2 for both targets was 0.024 37 GeV2 (Q=0.1561 GeV). The asymmetries are Bn=−10.68±0.90(stat)±0.57(syst) ppm for 12C and Bn=−12.16±0.58(stat)±0.62(syst) ppmmore »for 27Al. The results are consistent with theoretical predictions, and are compared to existing data. When scaled by Z/A, the Q dependence of all the far-forward angle (θ<10∘) data from 1H to 27Al can be described by the same slope out to Q≈0.35 GeV. Larger-angle data from other experiments in the same Q range are consistent with a slope about twice as steep.« less
  4. A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of θlab=7.9° and a mean energy of 1.149 GeV. The asymmetry result is Bn=−5.194±0.067(stat)±0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (θlab→0) where they should be most reliable.