skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kowligy, Abijith_S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Laser frequency combs (LFCs) are an important component of Doppler radial velocity (RV) spectroscopy that pushes fractional precision to the 10−10level, as required to identify and characterize Earth-like exoplanets. However, large intensity variations across the LFC spectrum that arise in the nonlinear broadening limit the range of comb modes that can be used for optimal wavelength calibration with sufficient signal-to-noise ratio. Furthermore, temporal spectral-intensity fluctuations of the LFC, that are coupled to flux-dependent detector defects, alter the instrumental point spread function (PSF) and result in spurious RV shifts. To address these issues and improve calibration precision, spectral flattening is crucial for LFCs to maintain a constant photon flux per comb mode. In this work, we demonstrate a dynamic spectral shaping setup using a spatial light modulator (SLM) over the wavelength range of 800–1300 nm. The custom shaping compensates for amplitude fluctuations in real time and can also correct for wavelength-dependent spectrograph transmission, achieving a spectral profile that delivers the constant readout necessary for maximizing precision. Importantly, we characterize the out-of-loop properties of the spectral flattener to verify a twofold improvement in spectral stability. This technique, combined with our approach of pumping the waveguide spectral broadener out-of-band at 1550 nm, reduces the required dynamic range. While this spectral region is tailored for the LFC employed at the Habitable-zone Planet Finder (HPF) spectrograph, the method is broadly applicable to any LFC used for astronomical spectrograph calibration. 
    more » « less
  2. High-harmonic generation (HHG) provides short-wavelength light that is useful for precision spectroscopy and probing ultrafast dynamics. We report efficient, phase-coherent harmonic generation up to the ninth order (333 nm) in chirped periodically poled lithium niobate waveguides driven by phase-stable ≤<#comment/> 12 n J , 100 fs pulses at 3 µm with 100 MHz repetition rate. A mid-infrared to ultraviolet-visible conversion efficiency as high as 10% is observed, among an overall 23% conversion of the fundamental to all harmonics. We verify the coherence of the harmonic frequency combs despite the complex highly nonlinear process. Accommodating the extreme spectral bandwidth, numerical simulations based on a single broadband envelope equation with only quadratic nonlinearity give estimates for the conversion efficiency within approximately 1 order of magnitude over a wide range of experimental parameters. From this comparison between theory and experiment, we identify a dimensionless parameter capturing the competition between three-wave mixing and group-velocity walk-off of the harmonics that governs the cascaded HHG physics. We also gain insights into spectral optimization via tuning the waveguide poling profile and pump pulse parameters. These results can inform cascaded HHG in a range of different platforms. 
    more » « less
  3. We report on the development of a high-power mid-infrared frequency comb with 100 MHz repetition rate and 100 fs pulse duration. Difference frequency generation is realized between two branches derived from an Er:fiber comb, amplified separately in Yb:fiber and Er:fiber amplifiers. Average powers of 6.7 W and 14.9 W are generated in the 2.9 µm idler and 1.6 µm signal, respectively. With high average power, excellent beam quality, and passive carrier-envelope phase stabilization, this light source is a promising platform for generating broadband frequency combs in the far infrared, visible, and deep ultraviolet. 
    more » « less