skip to main content


Search for: All records

Creators/Authors contains: "Kozemchak, Claire E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Non‐heme high‐spin (hs) {FeNO}8complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2(2) could be isolated and structurally characterized. We propose that2is formed from dimerization of the hs‐{FeNO}8intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that2models intermediates in hs‐{FeNO}8complexes that precede the disproportionation reaction.

     
    more » « less
  2. Abstract

    Non‐heme high‐spin (hs) {FeNO}8complexes have been proposed as important intermediates towards N2O formation in flavodiiron NO reductases (FNORs). Many hs‐{FeNO}8complexes disproportionate by forming dinitrosyl iron complexes (DNICs), but the mechanism of this reaction is not understood. While investigating this process, we isolated a new type of non‐heme iron nitrosyl complex that is stabilized by an unexpected spin‐state change. Upon reduction of the hs‐{FeNO}7complex, [Fe(TPA)(NO)(OTf)](OTf) (1), the N‐O stretching band vanishes, but no sign of DNIC or N2O formation is observed. Instead, the dimer, [Fe2(TPA)2(NO)2](OTf)2(2) could be isolated and structurally characterized. We propose that2is formed from dimerization of the hs‐{FeNO}8intermediate, followed by a spin state change of the iron centers to low‐spin (ls), and speculate that2models intermediates in hs‐{FeNO}8complexes that precede the disproportionation reaction.

     
    more » « less